Смекни!
smekni.com

Вопросы по курсу «МАТЕМАТИКА» для студентов 2 курса дневного отделения (стр. 5 из 6)

Предельная вероятность в марковском случайном процессе существует, если этот процесс удовлетворяет свойству транзитивности. Процесс в протекающей системе называется транзитивным, если существует интервал времени t , в течение которого система может перейти из любого состояния Si в любое другое состояние Sj.

Алгебраические уравнения для предельной вероятности состояний

Пусть марковский случайный процесс удовлетворяет свойству транзитивности, тогда для него при t ® ¥ существуют предельные вероятности состояний Pi=const.

, Þ , в этом случае вместо дифференциального уравнения Колмогорова получили систему линейных уравнений относительно вероятности состояний

Одно уравнение отбрасывается, остается n уравнений, решая эту систему получаем Р1, Р2, ... , Рn.

45. Процессы гибели и размножения. Формулы для нахождения предельных вероятностей.

Мы предполагаем, что все потоки, переводящие систему из любого Si в Si+1 и из Si в Si-1 являются простейшими.

l i, i+1, l i, i-1 - интенсивность потока

Процессы такого типа называются процессами гибели и размножения.

Составим систему уравнений для нахождения предельной вероятности состояний:

S0: l 01P0 = l 10P1 S1: l 10P1 + l 12P1 = l 01P0 + l 21P2 S2: l 21P2 + l 23P2 = l 12P1 + l 32P3 ... Sn: l n, n-1 Pn = l n-1, n Pn-1 P0 + P1 + P2 + ... + Pn = 1

Из первого уравнения выражаем P1 =

l 01P0 + l 12P1 =

l 01P0 + l 21P2

P2 =

P3 =

Pn =
...

P0 +

... +
= 1

46. Потоки событий. Простейший поток и его свойства.

Потоком событий называется последовательность каких-то однородных событий, следующих друг за другом через случайные интервалы времени, т.е. в произвольные моменты времени.

Потоки избираются на числовой оси, представляющей ось времени, точками, соответствующими моменту наступления событий.

Например: - поток вызовов, поступающих на станцию скорой помощи;

- поток автомобилей, пересекающих перекресток.

Среднее число событий, происходящих в единицу времени называется интенсивностью потока. l - среднее число событий в потоке, происходящее за единицу времени. Свойства потока:

Поток называется стационарным, если вероятность наступления того или иного числа событий за интервал времени длины а зависит от длины этого интервала и не зависит от того, в какой момент времени начинается отсчет этого интервала.

t2 – t1 = a

Поток событий называется потоком без последействия (без последствия), если для любых непересекающихся интервалов времени длины t 1 и t 2.

Вероятность появления того или иного числа событий в интервале t 2 не зависит от того, какое число событий произошло в интервале t 1.

Иначе, отсутствие последствия означает независимость наступления событий во времени.

3. Поток называется ординарным, если вероятность наступления двух и более событий за некоторый достаточно малый интервал времени

t пренебрежимо мала по сравнению с вероятностью наступления одного события за этот интервал.

Поток, обладающий всеми тремя перечисленными свойствами называется простейшим.

47. Закон распределения числа событий за фиксированный промежуток времени и закон распределения интервала времени между событиями в простейшем потоке.

Пусть рассматривается какой-то поток событий. С ним всегда можно связать дискретную СВ – число событий, происходящих за интервал длины t . Эта СВ дискретна. С этим же потоком можно связать НСВ – интервал времени между событиями. Т – интервал времени между событиями в потоке. Для простейшего потока доказано, что число событий, попадающих на интервал длины t является ДСВ, распределенной по закону Пуассона. Вероятность того, что за время t произойдет ровно k событий.

(a > 0)

a = t l , l - интенсивность простейшего потока

при t = 1

Найдем закон распределения интервала времени между событиями простейшего потока. Выведем закон распределения интервала времени между событиями в потоке.

F(t) = ?

Fт(t) = P(T<t) = 1 – P(T ³ t) = 1 – Pt(k=0) = 1 -

= 1 – e-l t, t ³ 0

Fт(t) = l e-l t

Всякий простейший поток можно задать интенсивностью, либо задать среднее значение времени между событиями в потоке (Т).

Средняя продолжительность интервала времени

; М(Т) =
=
Þ l =

48.Многоканальная СМО с отказами.

СМО— система, предназначенная для обслуживания какого-то потока поступающих на вход в систему заявок. Система характеризуется наличием того или иного числа каналов обслуживания. Если в системе несколько каналов, то мы считаем эти каналы равноправными, и они имеют одинаковые хар-ки (среднее число заявок, обслуж. 1-им каналом при непрерывной работе за единицу времени—одно и то же для всех каналов). Пусть СМО имеет n каналов обслуживания и на вход в систему поступает простейший поток заявок с интенсивностью l . Будем считать, что среднее время обслуживания одной заявки одним каналом Тоб=1/m ; продолж. Обслуж. Тоб—СВ, распределенная по показательному закону с параметром m . Тогда при непрерывной работе канала он может обслужить m заявок в единицу времени (технич., профес. Хар-ка каналов).

Пусть в случае, когда заявка, поступившая в систему, застает свободный хотя бы один канал, то она поступает сразу под обслуживание каким-то одним каналом. Если же заявка поступает в момент занятости всех каналов, то она получает отказ в обслуживании и покидает систему необслуженной. Нарисуем граф состояний таких СМО, при этом нумерацию состояний будем вести по числу заявок, находящихся в системе: S0—заявок нет S1—одна заявка, один канал занят, n-1 каналов свободно ,,, Sn—n заявок, n каналов занято, нет свободных.

Вероятности состояний:

Р0=(1+

)-1

P1=

; P2=(l 2/(2!m 2))*P0;....;Рr=(l k/k!m k)*P0

Ротказа=Рn ( все каналы заняты). Относительная пропускная способность системы (вер-ть обслуживания) q=1—Pотказа=1—Рn Абсолютная пропускная способность(ср. число заявок, обслуж. за единицу времени) A=l q Среднее число занятых каналов

=Aq/m

Можно найти двумя способами:

кзан—число занятых каанлов—СВ .

зан=М(кзан)=
зан=A/m 5.
незан=n—
зан 7. Степень загруженности каналов s =
зан/n 49.Многоканальная СМО с ограниченным числом мест в очереди.

СМО— система, предназначенная для обслуживания какого-то потока поступающих на вход в систему заявок. Система характеризуется наличием того или иного числа каналов обслуживания. Если в системе несколько каналов, то мы считаем эти каналы равноправными, и они имеют одинаковые хар-ки (среднее число заявок, обслуж. 1-им каналом при непрерывной работе за единицу времени—одно и то же для всех каналов). Пусть дана сис-ма с простейшим потоком, инт-ть которого l , один канал в среднем может обслужить m заявок в единицу времени. Пусть в сис-ме имеется m мест для постановки заявок в очередь. Предположим, что заявка, заставшая в момент своего поступления один канал свободным, тут же обслуж. Если же в момент поступления заявки все каналы заняты, но имеется хотя бы одно свободное место в очереди, то заявка становится в очередь на обслуживание, при этом как только один из каналов освобождается, одна заявка из очереди поступает на обслуживание. Если заявка, поступившая в систему, застает занятыми все каналы и места в очереди, то она получает отказ в обслуживании и покидает систему. Возможные состояния системы: S0—заявок нет S1—одна заявка, n-1 канал свободен, все места в очереди свободны Sn—n заявок, все каналы заняты, все места в очереди свободны Sn+1—все каналы заняты, 1 заявка в очереди, m-1 мест в очереди свободны Sn+m—все каналы заняты, m мест (все) в очереди заняты.