Пуанкаре существенно дополнил и расширил результаты своих предшественников, показал, при каких условиях решение в окрестности неособой точки может быть разложено не только по степеням независимой переменной, но и по степеням начальных данных или малого параметра, каким образом эти ряды могут оставаться сходящимися при произвольных значениях независимой переменной.
Но сколь ни важны результаты, полученные Пуанкаре относительно поведения решений дифференциальных уравнений в окрестности обычной точки, свои главные усилия он сосредоточил на выяснении того, что происходит в окрестности особой точки.
Подводя итог этим своим исследованиям, Пуанкаре писал в «Аналитическом резюме» [3, с. 583–584]:
«Изучение интегралов дифференциальных уравнений в окрестности данной точки, какова бы ни была его польза с точки зрения числовых вычислений, может рассматриваться лишь как первый шаг. Эти разложения, которые справедливы только в очень ограниченной области, ...не могут рассматриваться как истинное интегрирование. Поэтому их следует принять лишь как отправную точку в более глубоком изучении интегралов дифференциальных уравнений, где мы были бы намерены выйти из ограниченных областей, где мы были систематически подготовлены исследовать интегралы по всей плоскости. Но это изучение может проводиться с двух разных точек зрения. Можно задаться целью выразить интегралы посредством разложений, справедливых всегда и более не ограниченных какой-либо частной областью. При этом приходят к введению в науку новых трансцендентностей; и это введение необходимо, так как старые известные функции позволяют интегрировать лишь небольшое число дифференциальных уравнений. Однако этот способ интегрирования, который даёт нам знание свойств уравнения с точки зрения теории функций, один не достаточен, если мы желаем применять дифференциальные уравнения к вопросам механики или физики. Наши разложения не показали бы нам, по крайней мере без значительного труда, будет ли, например, функция постоянно возрастать или колебаться между определёнными пределами, или она будет возрастать сверх всякого предела. Другими словами, если функцию рассматривать с точки зрения определения плоской кривой, мы ничего не узнаем об общей форме этой кривой. В некоторых приложениях все эти проблемы имеют такую же важность, как и вычисления, и они составляют новую проблему, которую нам приходится решать». |
Мы видим, что слабое место локального рассмотрения основной арены, на которой развёртываются события, подвластные классическому анализу, указано Пуанкаре ясно и определённо. Для перехода от рассмотрения в малом к рассмотрению в целом необходимы топологические и теоретико-групповые соображения, и Пуанкаре использует эти соображения, создав топологию и применяя группы Ли.
С волшебной лёгкостью он переходит от одной области математики к другой, используя технику, наиболее адекватную решаемой задаче, попутно внося в применяемый метод существенные усовершенствования и с щедростью гения разбрасывая новые идеи. Именно Пуанкаре ввёл понятие универсальной обёртывающей алгебры. Именно ему принадлежит так называемый метод продолжения, суть которого состоит в погружении решаемой задачи в однопараметрическое семейство задач, зависящих от вспомогательного параметра, и в выяснении разрешимости задачи в зависимости от значений этого вспомогательного параметра. Пуанкаре одним из первых стал использовать неподвижную точку и принцип сжатых отображений для доказательства существования решений нелинейных задач и построения эффективных итерационных процедур.
Логика исследования, приведшая в своё время геометров к необходимости исследования дифференциального уравнения самого по себе, без сведения к более простым проинтегрированным ранее, привела Пуанкаре к следующему шагу: к исследованию кривых, определяемых дифференциальными уравнениями. Так началась славная история качественной теории дифференциальных уравнений. Вот как рассказывает об этом сам Пуанкаре в «Аналитическом резюме» [3, с. 595–597]:
«Даже когда придут к тому, чтобы то, что было мною сделано для линейных уравнений, проделать для произвольного уравнения, т.е. найти разложения интегралов, справедливые во всей плоскости, это ещё не будет основанием для отказа от результатов, которые можно получить другими методами, так как может случиться, что эти методы откроют нам частности, которые разложения не представляли бы нам сразу с очевидностью. Это соображение побудило меня встать на новую точку зрения, и я не мог бы найти лучшего способа дать о ней представление, чем воспроизвести то, что писал в момент, когда начинал эти исследования. ...Итак, необходимо изучать функции, определённые дифференциальными уравнениями, сами по себе, не пытаясь сводить их к более простым функциям, так же, как это сделано для алгебраических функций, которые пытались сводить к радикалам и которые изучают теперь прямо, и так же, как это сделано для интегралов от алгебраических дифференциалов, которые долго пытались выразить в конечных терминах. Исследовать, каковы свойства дифференциальных уравнений, является, таким образом, вопросом, имеющим самый большой интерес. По этому пути уже сделали первый шаг, изучив функцию в окрестности одной точки плоскости. Сегодня речь идёт о том, чтобы идти дальше и изучать эту функцию на всём протяжении плоскости. В этом исследовании отправной точкой нам будет служить, разумеется, то, что уже известно об изучаемой функции в некоторой области плоскости. Полное изучение функции состоит из двух частей: 1) качественной (так сказать), или геометрического изучения кривой, определяемой функцией; 2) количественной, или вычисления значений функции. ...Именно с качественной стороны должна начинаться теория всякой функции, и вот почему в первую очередь возникает следующая задача: построить кривые, определяемые дифференциальными уравнениями. ...Это качественное исследование и само по себе будет иметь первостепенный интерес. Различные и чрезвычайно важные вопросы анализа и механики могут быть сведены к нему. ...Таково широкое поле для открытий, которое лежит перед геометрами. Я не притязал на то, чтобы пройти его всё, но хотел, по крайней мере, перейти его границы и ограничил себя одним очень частным случаем, тем, который естественно представляется с самого начала, т.е. изучением дифференциальных уравнений первого порядка первой степени». |
Обобщив и специализировав результаты Брио и Бука, а также свои собственные, Пуанкаре обнаружил существование особых точек четырёх видов (сёдел, узлов, фокусов и центров — все названия принадлежат ему), изучил их расположение на плоскости, ввёл понятия цикла без контакта и предельного цикла. Тем самым им было выковано оружие, которое через много лет было обнаружено в математическом арсенале учеником Л.И. Мандельштама — А.А. Андроновым — и стало математическим образом, адекватным автоколебаниям.
Обнаружение сложных — хаотических и стохастических — режимов в детерминированной динамической системе также связано с именем Пуанкаре. Занимаясь изучением так называемой ограниченной задачи трёх тел, он открыл существование особых фазовых кривых, отвечающих неустойчивым движениям. Именно они являются тем механизмом, который хаотизирует, запутывает траектории динамической системы. В знаменитых «Новых методах небесной механики» Пуанкаре так описывал гомоклиническую структуру [4, с. 339]:
«Если попытаться представить себе фигуру, образованную этими двумя кривыми — устойчивая и неустойчивая инвариантные кривые, проходящие через седловую особую точку, — и их бесчисленными пересечениями, каждое из которых соответствует двоякоасимптотическому решению, то эти пересечения образуют нечто вроде решётки, ткани, сети с бесконечно тесными петлями; но ни одна из двух кривых никогда не должна пересечь самоё себя, но она должна навиваться на самоё себя очень сложным образом, чтобы пересечь бесконечно много раз все петли сети. Поражаешься сложности этой фигуры, которую я даже не пытаюсь изобразить. Ничто не является более подходящим, чтобы дать нам представление о сложности задачи трёх тел и, вообще, всех задач динамики, в которых нет однозначного интеграла и в которых ряды Болина расходятся». |
Открытие сложных хаотических режимов позволило не только понять природу неинтегрируемости задач динамики, но и постичь ограниченность так называемого ньютоновского детерминизма, по-новому взглянуть на природу случайного. Экспоненциальное разбегание первоначально близких траекторий, вынужденных оставаться в ограниченной части фазового пространства, приводит к их перепутыванию, т.е. в конечном счёте к хаотизации. В одной из своих работ по философии науки («Наука и метод») Пуанкаре говорит о природе случайного так [3, с. 323]: