Смекни!
smekni.com

Нелинейная динамика: Пуанкаре и Мандельштам (стр. 3 из 3)

«...Совершенно ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которого мы не можем предусмотреть, и тогда мы говорим, что это явление представляет собой результат случая. ...Иногда большая разница в первоначальном состоянии вызывает большое различие в окончательном явлении. Небольшая погрешность в первом вызвала бы огромную ошибку в последнем. Предсказание становится невозможным, мы имеем перед собой явление случайное».

Пуанкаре принадлежит в числе прочих ещё одно важное открытие: непрерывный (более того, дифференцируемый) поток в фазовом пространстве, например, в окрестности периодической траектории, можно изучать с помощью дискретного отображения, индуцируемого этим потоком на версальном сечении (так называемом сечении Пуанкаре). Тем самым Пуанкаре одним из первых восстановил справедливость, уравняв в правах дискретное отображение сечения в себя и непрерывное (гладкое) отображение фазового пространства в себя. Развернувшиеся впоследствии острые споры о том, что первично — дискретное или непрерывное, несколько напоминают споры остро- и тупоконечников: в природе непрерывность встречается наряду с дискретностью, и при выборе средства для решения той или иной задачи следует скорее заботиться об его адекватности, нежели отдавать предпочтение определённому подходу только потому, что он дискретен или непрерывен.

С именем Пуанкаре связан и метод нормальных форм, позволяющий избавляться от «лишних» (нерезонансных) членов в правой части уравнений с помощью формальных обратимых замен переменных (существующие теоремы о сходимости рядов, задающих замены, в приложениях, как правило, не используются). Нормальные формы позволяют не только упрощать решаемые уравнения, но и строить разумные базовые модели. Обычно модель выбирается с таким расчётом, чтобы она воспроизводила с большей или меньшей точностью некое множество режимов. Однако при построении модели обычно делаются многочисленные неконтролируемые предположения, не позволяющие в конце анализа однозначно ответить на вопрос, какое отношение к исходным физическим моделям имеет выбранная базовая модель. Приведение к нормальной форме означает разбиение множества исходных моделей на классы эквивалентности с последующим выбором по одному представителю от каждого класса. При таком подходе ничто не мешает после изучения режимов, допускаемых базовой моделью, вернуться к исходной модели без какой бы то ни было потери информации.

В несметных сокровищах наследия Пуанкаре можно найти и многие другие важные понятия и теории, созданные на правах «первооткрывателей» теми, кто либо никогда не читал трудов Пуанкаре, либо делал это недостаточно внимательно. В частности, из его работ нетрудно извлечь достаточно подробно проработанные контуры теории бифуркаций, или, как предпочитал называть их сам Пуанкаре, «смен устойчивости».

«К сожалению, — замечает В.И. Арнольд [5, с. 232–233], — бесхитростные тексты Пуанкаре трудны для математиков, воспитанных на теории множеств. (Пуанкаре сказал бы: «Петя вымыл руки» там, где современный математик напишет просто: «Существует t1 < 0 такое, что образ точки t1 при естественном отображении t → Петя (t) принадлежит множеству грязноруких, и такое t2 Î (t1, 0], что образ точки t2 при том же отображении принадлежит дополнению вышеупомянутого множества».) Видимо, поэтому многие его идеи остались незамеченными ближайшими к нему поколениями. Исключение составляют, пожалуй, лишь Биркгоф и его ученики Морс и Уитни. Том в докладе о работах Смейла на Математическом конгрессе в 1966 г. в Москве назвал его чуть ли не единственным математиком, прочитавшим Пуанкаре и Биркгофа».

Что же касается «наивных» определений Пуанкаре, то попытки обобщения их, как правило, не приводят к новым объектам.

И всё же, несмотря на известное высокомерие потомков, труды Пуанкаре не встали мёртвым грузом на верхних полках библиотек. Как показала, в частности, конференция по математическому наследию Анри Пуанкаре, состоявшаяся с 7 по 10 апреля 1980 г. в университете штата Индиана, идеи Пуанкаре питают современную математику в гораздо большей мере, чем это может показаться непросвещённому узкому специалисту.

Жизнь другого главного действующего лица нашего повествования, Леонида Исааковича Мандельштама (1879–1944), по словам его ближайшего сотрудника Н.Д. Папалекси [2, с. 5], «не отличалась внешним блеском. Он никогда не добивался внешних почестей, не стремился играть какой-либо роли, ему совершенно чужды были честолюбие и славолюбие. Но тем полнее и богаче была его внутренняя жизнь. Это была прекрасная жизнь истинного учёного и глубокого мыслителя, искателя научной истины, человека исключительного душевного благородства».

Влияние научных идей Л.И. Мандельштама на современную физику в целом и, в особенности, на нелинейную динамику неоспоримо. Отчасти оно прослежено в обзоре [6], посвящённом 100-летию выдающегося учёного. Полученные им результаты по праву считаются классическими. Они вошли в учебники, стали достоянием истории науки и, что гораздо важнее, предметом пристального внимания со стороны тех, кто принимает непосредственное участие в создании нелинейной динамики на её современном этапе.

Не менее важной, чем собственные научные результаты, была выдвинутая Л.И. Мандельштамом идея выработки нелинейного физического мышления — «создания наглядных физических представлений, имеющих в своей основе адекватные нелинейным физическим объектам математические представления и понятия» [2, с. 107].

Непревзойдённый знаток и ценитель линейной теории, Л.И. Мандельштам с присущей ему тонкой физической интуицией и особой, чисто «мандельштамовской» ясностью мышления раньше и лучше других осознал ограниченность линейной теории с её принципом суперпозиции, теоремами существования и единственности решений. Менее всего склонный принимать новое только потому, что это новое, бережно, чтобы не сказать консервативно, относившийся к старому (в данном случае — к линейной теории), Л.И. Мандельштам видел, сколь широк круг физических явлений, не допускающих описания в рамках линейной идеализации, сколь ненадёжной становится «линейная психология», способная скорее вводить в заблуждение, чем служить надёжной путеводной нитью исследователю.

Высказанная Л.И. Мандельштамом идея не осталась благим пожеланием. Она была воплощена в плоть и кровь его учениками. Выступая 22 декабря 1944 г. на совместном заседании Московского государственного университета им. М.В. Ломоносова и Академии наук СССР, посвящённом памяти Л.И. Мандельштама, А.А. Андронов сказал [2, с. 120]:

«Я перечислю некоторые нелинейные понятия, либо получившие точный физический и математический смысл, либо впервые выдвинутые в этот с 1927 г. период времени. Я начну с фазового пространства, которое... перестало быть только математической абстракцией и приобрело высокую степень физической наглядности не только потому, что физики с ним свыклись, но и потому, что оказалось возможным приблизить его к нашим органам чувств, наблюдая систематически фазовые траектории на экране осциллографа. ...Если говорить об автономных системах, то такие физические понятия, как автоколебания, мягкое и жёсткое возбуждение автоколебаний, затягивание и т.д., получили теперь твёрдую математическую основу в виде предельных циклов, теории бифуркаций, областей устойчивости в большом и т.д. Если говорить о неавтономных системах, то такие физические понятия, как феррорезонанс, захватывание разных видов, получили математическую основу в теории периодических решений и их бифуркаций, а ряд других физических понятий, например резонанс второго рода, асинхронное возбуждение и т.д., были вновь выдвинуты, отправляясь от математической теории. Не все достижения этих лет в направлении выработки нелинейного мышления принадлежат Л.И. Мандельштаму или лицам, так или иначе с ним связанным. Но именно Л.И. Мандельштам вызвал к жизни это новое, опирающееся, с одной стороны, на настоящую математику, с другой стороны — на тонкий радиофизический эксперимент, научное направление в теории нелинейных колебаний».

С тех пор набор «первичных» нелинейных физических понятий, опирающихся на прочную математическую основу, существенно пополнился. Солитон, различные типы отдельных бифуркаций, цепочки бифуркаций, катастрофы, перемежаемость, диссипативные структуры и т.д. — таков далеко не исчерпывающий их перечень. Естественно спросить: как мог один человек подняться до столь высокого, чтобы не сказать пророческого, предвидения? Ответ на этот вопрос, как нам кажется, дал И.Е. Тамм [2, с. 131–132], словами которого нам бы хотелось закончить нашу лекцию:

«Одна из основных особенностей дарования Л.И. [Мандельштама], сообщавшая ему особую силу, заключалась, как мне кажется, в редчайшем сочетании в одном человеке ума конкретного, геометрически пластичного и ума абстрактного, логически аналитического. С одной стороны, способность единым взглядом охватить сложное многообразие разнородных явлений, с предельной чёткостью усмотреть в них черты сходства и различия и воссоздать всё существенное в простой и наглядной модели, с другой стороны, острый интерес к конкретной индивидуальности физического явления, порождавший те чувства непосредственного наслаждения, которые испытывал Л.И. при экспериментировании. В этом истоки и необычайного искусства Л.И. в постановке экспериментов, и его исключительно плодотворной деятельности в области технической физики. И вот с этими свойствами ума «широкого» и «английского», по терминологии Дюгема, в Л.И. сочеталась необычайная сила и тонкость абстрактной логической мысли и необычайная глубина анализа принципиальных основ физической теории, восходящего к основным категориям мышления».

Список литературы

1. Бурбаки Н. Архитектура математики // Математическое просвещение. М.: Физматгиз, 1960. Вып. 5. С. 99–112. назад к тексту

2. Академик Л.И. Мандельштам. К 100-летию со дня рождения. М.: Наука, 1979. назад к тексту

3. Пуанкаре А. Избранные труды. Т. 3. М.: Наука, 1974. назад к тексту

4. Пуанкаре А. Избранные труды. Т. 2. М.: Наука, 1972. назад к тексту

5. Арнольд В.И. Теория катастроф // Современные проблемы математики. Фундаментальные направления. Т. 5. М.: ВИНИТИ, 1986. назад к тексту

6. Гапонов-Грехов А.В., Рабинович М.И. Л.И. Мандельштам и современная теория нелинейных колебаний и волн // УФН. 1979. Т. 128, вып. 4. С. 579–624. назад к тексту

Нелинейные волны. Динамика и эволюция. М.: Наука, 1989