Смекни!
smekni.com

Теоремы софиста Горгия и современная математика (стр. 2 из 4)

Частично, и на самом деле в очень большой степени (достаточной для большинства областей математики), с этой проблемой справились, аккуратно доведя всё до множеств и выписав некоторый набор аксиом теории множеств, которые интуитивно очевидны и верность этих аксиом математиками, в общем-то, не оспаривается.

Скажем, аксиома объединения. Если у нас есть набор каких-то множеств, то мы можем сказать: а давайте образуем множество, которое содержит все элементы вот этих множеств из этого набора. Нет никаких разумных возражений против того, что такое множество существует. Есть и более хитрые аксиомы, с которыми проблем немножко больше. Мы сейчас рассмотрим три хитрые аксиомы в теории множеств, про которые в принципе могут возникнуть сомнения.

Например, есть такая аксиома. Допустим, что у нас есть множество каких-то элементов, и допустим, что по каждому из них мы можем однозначно определить значение некой функции на этом элементе. Аксиома говорит, что мы можем применить эту функцию к каждому элементу этого множества, и то, что получится, вместе снова будет образовывать множество (рис. 2). Самый простой пример: функция, переводящая x в x2, её мы умеем считать. Скажем, если у нас есть какой-то набор натуральных чисел, то мы можем каждое из них возвести в квадрат. Получится снова какой-то набор натуральных чисел. Такая интуитивно очевидная аксиома, согласны? Но вот, проблема в том, что эти функции могут быть определены очень сложным образом, множества могут быть очень большими. Бывает и такая ситуация: про нашу функцию мы умеем доказывать, что она однозначно определена, но сосчитать конкретное значение этой функции для каждого элемента множества — это чрезвычайно трудно или даже бесконечно трудно. Хотя мы знаем, что какой-то ответ уж точно есть, причём он однозначен. Даже в таких сложных ситуациях эта аксиома считается по-прежнему применимой, и как раз вот в таком самом общем виде она служит одним из источников проблем в теории множеств.

Рис. 2.

Вторая аксиома, которая, с одной стороны, очевидна, а с другой, приносит проблемы, — это аксиома взятия всех подмножеств данного множества. Она говорит, что если у нас какое-то множество есть, то у нас есть и множество, состоящее из всех подмножеств данного. Для конечных множеств это, разумеется, очевидно. Если у нас есть конечное множество из N элементов, то подмножеств у него будет всего 2N. В принципе мы их можем даже все выписать, если мы не очень ленивы. С самым простым бесконечным множеством, у нас проблем тоже нет. Смотрите: возьмём множество натуральных чисел 1, 2, 3, 4, 5, 6, 7, ... и так далее. Почему нам очевидно, что семейство всех подмножеств множества натуральных чисел существует? Потому что мы знаем, что это за элементы. Как можно представить себе подмножество натуральных чисел? Давайте поставим единички у тех элементов, которые мы берём, а нолики — у тех, которые не берём, ну и так далее. Можно представить себе, что это бесконечная двоичная дробь (рис. 3).

1 0 , 1 2 0 3 1 4 0 5 0 6 1 7 0 ... ...

Рис. 3.

С точностью до маленьких поправок (вроде того, что некоторые числа могут представляться двумя разными бесконечными двоичными дробями) оказывается, что действительные числа — это примерно то же самое, что подмножества натуральных чисел. И поскольку интуитивно мы знаем, что с действительными числами всё в порядке, они есть, наглядно их можно представлять как непрерывную прямую, то в этом месте с нашей аксиомой о множестве всех подмножеств данного множества тоже всё в порядке.

Если дальше подумать, то становится уже немножко боязно. Тем не менее, математики считают, что эта аксиома всегда выполняется: если у нас какое-то множество есть, то значит, есть и множество всех его подмножеств. Иначе очень трудно было бы некоторые конструкции проделать.

И ещё одна аксиома, с которой было больше всего проблем, потому что в неё сначала не верили. Может быть, вы даже слышали её название — аксиома выбора. Её можно сформулировать многими разными способами, некоторыми — очень сложными, некоторыми — очень простыми. Я сейчас расскажу самый наглядный способ сформулировать аксиому выбора, при котором будет действительно очевидно, что она верна. Пусть у нас есть набор каких-то множеств. Они могут на самом деле быть и пересекающимися между собой, но это не важно — пусть для простоты они пока не пересекающиеся. Тогда мы можем построить произведение всех этих множеств. Что это означает? Элементами этого произведения будут вот такие штуки — мы из каждого возьмём по одному элементу и образуем из них всех одно множество (рис. 4).

Рис. 4.

Каждый способ выбрать по одному элементу из множества даёт элемент произведения этих множеств. Конечно, если среди этих множеств оказалось пустое, из которого выбрать нечего, то произведение их всех тоже будет пусто. А аксиома выбора утверждает такой совершенно очевидный факт — если все эти множества не пустые, то и произведение будет непустое. Согласны, что факт очевиден? И это, видимо, послужило, в конце концов, одним из самых сильных аргументов в пользу того, что действительно аксиома выбора верна. В других формулировках аксиома выбора звучит совсем не так очевидно, как в этой.

Наблюдения за тем, как математики доказывают свои утверждения, пытаясь перевести всю математику на язык теории множеств, показали, что во многих местах математики, сами того не замечая, эту аксиому используют. Как только это заметили, сразу стало понятно, что её нужно выделить в отдельное утверждение — раз уж мы её используем, то мы её должны откуда-то взять. Либо мы должны её доказать, либо мы должны объявить, что это базовый очевидный факт, который мы берём за аксиому и которым разрешаем пользоваться. Выяснилось, что это действительно базовый факт, что доказать его, используя только все остальные факты, невозможно, опровергнуть его тоже невозможно, и поэтому если уж его принимать, то принимать именно как аксиому. А принимать, конечно, надо, потому что в такой форме он и вправду очевиден.

Тут и возникли большие проблемы, потому что как только этот факт в явном виде сформулировали и сказали «будем его использовать», математики тут же кинулись его использовать и, используя его, доказали большое количество совершенно интуитивно неочевидных утверждений. И даже, более того — утверждений, которые интуитивно кажутся неверными.

Вот самый наглядный пример такого утверждения, которое доказали с помощью аксиомы выбора: можно взять шар, разделить его на несколько кусков и сложить из этих кусков два точно таких же шара. Что здесь означает «разделить на несколько кусков», допустим, на 7? Это значит, что про каждую точку мы говорим, в какой из этих семи кусков она попадает. Но это не то, что разрезать шар ножиком — это может быть гораздо сложнее. Например, вот такой трудно представимый, но легко объяснимый способ разрезать шар на два куска. Давайте возьмём в один кусок все точки, у которых все координаты рациональные, а в другой кусок — все точки, у которых есть иррациональная координата. Про каждую точку мы знаем, в какой из кусков она попала, т.е. это законное разделение шара на два куска. Но наглядно это представить себе очень трудно. Каждый из этих кусков, если издали на него посмотреть, будет выглядеть как шар целиком. Хотя один из этих кусков будет на самом деле очень маленький, а другой — очень большой. Так вот, доказали с помощью аксиомы выбора, что шар можно так разрезать на 7 кусков, а потом эти куски немножко передвинуть (именно передвинуть в пространстве, не искорёживая никак, не искривляя) и собрать снова так, что получатся два шара, в точности таких же, как и тот, что был в самом начале. Это утверждение, хотя и доказано, звучит как-то дико. Но потом всё-таки поняли, что лучше уж смириться с такими следствиями аксиомы выбора, чем вообще от неё отказываться. Иначе никак: либо мы отказываемся от аксиомы выбора, и тогда нам не удастся её использовать вообще нигде, и очень многие важные красивые и интуитивно понятные математические результаты окажутся недоказуемыми. Либо мы её берём — тогда все те результаты становятся благополучно доказуемыми, но заодно у нас появляются такие вот уродцы. Но люди ко многому привыкают, и к этим уродцам они тоже привыкли. В общем, с аксиомой выбора сейчас вроде проблем нет.

Получается так, что у нас есть набор аксиом для теории множеств, есть наша математика. И более-менее кажется, что всё, что могут люди сделать в математике, может быть выражено на языке теории множеств. Но тут возникает та же самая проблема, которую в своё время обнаружил Гёдель в арифметике. Если у нас есть некий достаточно богатый набор аксиом, которые описывают наш мир множеств (который есть мир всей математики), обязательно найдутся утверждения, про которые мы никак не сможем узнать, верны они или нет. Утверждения, которые из этих аксиом доказать мы не сможем, и опровергнуть тоже не сможем. Теория множеств сильно развивается, и сейчас она ближе всего к этой проблеме: часто приходится сталкиваться с ситуацией, когда некоторые вопросы звучат вполне естественно, ответ на них получить хочется, но доказано, что ответа мы никогда не узнаем, потому что и тот ответ, и другой ответ из аксиом выведен быть не может.

Что делать? В теории множеств как-то пытаются с этим бороться, а именно, пытаются придумывать новые аксиомы, которые по какой-то причине всё-таки можно ещё добавить. Хотя, казалось бы, всё, что человечеству интуитивно очевидно, уже сведено к тем аксиомам теории множеств, которые были выработаны в начале XX века. А теперь оказывается, что хочется всё-таки ещё чего-то. Математики тренируют свою интуицию дальше, чтобы какие-то новые утверждения вдруг показались почему-то всем математикам интуитивно очевидными, и тогда их можно было бы принять в качестве новых аксиом в надежде, что с их помощью ответы на какие-то из таких вопросов могут быть получены.