Решение:
Задание 53
Даны вершины А1(Х1;Y1;Z1),. А2(Х2;Y2;Z2), А3(Х3;Y3;Z3), А4(Х4;Y4;Z4)
пирамиды. Требуется найти: 1) длину ребра А1А2; 2)Угол между ребрами А1А2 и А1А4; 3)угол между ребром А1А2и гранью А1А2 А3; 4) площадь грани А1А2 А3; 5) объем пирамиды; 6) уравнение высоты, опущенной из вершины А4на грань А1А2 А3; 7) уравнение плоскости, проходящей через высоту пирамиды, опущенной из вершины А4 на грань А1А2 А3, и вершину А1пирамиды.
A1 (3;5;4), А2(5;8;3), А3(1;9;9), A4(6;4;8);
Решение:
1)
Длина ребра А1А2;
2)
Длина ребра А1А4;
Скалярное произведение векторов А1А2 и А1А4:
Угол между ребрами А1А2 и А1А4:
3) Уравнение грани А1А2 А3:
Угол между ребром А1А2и гранью А1А2 А3:
4)Площадь грани А1А2А3:
кв. ед.5) Объем пирамиды:
куб. ед.6) уравнение высоты, опущенной из вершины А4на грань А1А2 А3:
7) Уравнение плоскости, проходящей через высоту пирамиды, опущенной из вершины А4 на грань А1А2 А3, и вершину А1пирамиды.
Задание 63.
Определить вид поверхности, заданной уравнением f(x;y;z)=0, и показать её расположение относительно системы координат.
Решение:
Эллиптический параболоид с вершиной О(z;o;o), направленный вдоль оси ОХ, и имеющий полуоси на оси
по осиЗадание 73.
Применяя метод исключения неизвестных, решить систему уравнений.
Решение:
2 | -9 | -4 | -3 | 3 | -83 | = > = > | 0 | -47 | -28 | -13 | 7 | -459 | ||
2 | -7 | -2 | -1 | -4 | -57 | 0 | -45 | -26 | -11 | 0 | -433 | |||
7 | -6 | 2 | -2 | 0 | -35 | 0 | -139 | -82 | -37 | -14 | -1351 | |||
1 | 19 | 12 | 5 | -2 | 188 | 1 | 19 | 12 | 5 | -2 | 188 | |||
0 | -47/7 | -4 | -13/7 | 1 | -459/7 | 0 | 68/77 | 30/77 | 0 | 1 | 980/77 | |||
0 | -45 | -26 | -11 | 0 | -433 | 0 | 45/11 | 26/11 | 1 | 0 | 433/11 | |||
0 | -233 | -138 | -63 | 0 | -2269 | 0 | 272/11 | 120/11 | 0 | 0 | 2320/11 | |||
1 | 39/7 | 4 | 3/7 | 0 | 398/7 | 1 | 94/77 | -190/77 | 0 | 0 | 481/77 | |||
0 | 0 | 0 | 0 | 1 | -2900/77 | |||||||||
0 | -19/15 | 0 | 1 | 0 | -2583/11 | |||||||||
0 | 13,6 | 1 | 0 | 0 | 116 | |||||||||
1 | 1574/231 | 0 | 0 | 0 | 22521/77 |
Общее решение системы:
Задание 83.
Даны векторы и . Показать, что векторы образуют базис четырехмерного пространства, и найти координаты вектора в этом базисе.
Решение:
Составим определитель из координат векторов и вычислим его:
Так как ,то векторы составляют базис. Найдем координаты вектора в этом базисе: