Федеральное агентство по образованию
Пензенский государственный педагогический университет имени В.Г. Белинского
Физико-математический факультет
Кафедра общей физики
Курсовая работа
Некоторые приложения дифференциального исчисления
Пенза 2008
Признаки возрастания и убывания функции
Функция f(x), заданная на интервале, называется возрастающей, если большим значениям аргумента соответствуют большие значения функций, т.е. если как только x2 > x1 ,так и f(x2)>f(x1). Функция называется убывающей, если из x2 > x1 следует f(x2)<f(x1). Возрастающие и убывающие функции носят общее название монотонных функций. Функция называется кусочно монотонной, если любой конечный интервал, содержащийся в ее области определения, состоит из нескольких интервалов, на каждом из которых функция монотонна (рис. 1).
Рис. 1
Основной принцип дифференциального исчисления дает простые признаки возрастания и убывания дифференцируемых (т.е. имеющих производную) функций.
Пусть функция f (х) возрастает на некотором интервале. Тогда ее график представляет собой линию, поднимающуюся при движении слева направо (рис. 2). Поэтому маленький отрезок касательной, почти совпадающий с кусочком графика, примыкающим к точке касания, будет тоже поднимающимся или, в крайнем случае, будет горизонтальным отрезком. Следовательно, угловой коэффициент касательной в любой точке кривой (т.е. значение производной) больше или равен нулю.
Рис. 2
Справедлива теорема:
Теорема 1. Пусть функция f(x) определена и непрерывна на некотором интервале и внутри него имеет конечную производную
Необходимость. Если f(x) монотонно возрастает, то, взяв х из промeжутка и придав ему приращение
и в пределе, при
Достаточность. Пусть дано, что
где (x1<c<x2). Так как
Для убывания функций имеются признаки, которые аналогичны признакам возрастания.
Теорема 2. Пусть функция f(x) определена и непрерывна на некотором интервале и внутри него имеет конечную производную
Связь между знаком производной и направлением изменения функции геометрически очевидна, так как производная представляет собой угловой коэффициент касательной к графику функции. Знак этого угловогПримеры
1) Функция f(x)=x3. Она возрастает, но её производная
2) Для возрастающей функции производная может даже в конечном промежутке обращаться в 0 бесконечное множество раз. Рассмотрим функцию
Эта производная обращается в 0 при
Следовательно,
3) Найти промежутки монотонности функции
Находим производную
Рис. 3
На рисунке 3 показано распределение знаков производной по числовой оси. Применяя достаточные условия монотонности функции на интервале получаем, что у(х) возрастает на [-1; 1], убывает на (
Замечание. При решении задач практического содержания часто можно не проверять аналитически достаточность условийэкстремума (с помощью первой или второй производной коэффициента показывает, наклонена ли касательная вверх или вниз, а с нею - идет ли вверх или вниз и сама кривая.
Но в отдельных точках касательная при этом может оказаться и горизонтальной, т.е. производная - даже в строгом смысле - возрастающей (убывающей) функции может для отдельных значений х обращаться в 0.
Не каждая стационарная точка доставляет функции экстремум: необходимое условие не является достаточным. Например, для функции
Если точка
На рис. 4 точка х0- точка локального минимума функции f(x), x1 есть точка локального максимума. Глобальные минимум и максимум достигаются на концах а и b промежутка задания функции.
Рис. 4
Максимум и минимум функции носят общее название экстремумов, и точки, в которых они достигаются, называются точками экстремумов.
Рассмотрим задачу, в которой нужно найти все значения аргумента, доставляющих функции экстремум.
Точка локального максимума - точка х0, для которой f(x0) - наибольшее среди всех значений в некоторой окрестности точки х0. Локальный максимум функции - значение f(x0) в точке локального максимума, глобальный максимум - наибольшее значение функции, заданной на интервале. Точка х0называется точкой локального минимума для функции f(x), если ее значение f(x0) в этой точке меньше всех значений в некоторой ее окрестности