Смекни!
smekni.com

Колебательные движения. Восприятие звуковых колебаний (стр. 2 из 6)

.Некоторые лица, не обладающие абсолютным слухом, могут определять высоту звуков, пользуясь какими-нибудь добавочными способами. Например, некоторые певцы определяют высоту звука, пользуясь ощущением напряжения голосовых связок.

Путем упражнений можно, безусловно, развить относительный слух. Что же касается превращения ложного абсолютного слуха в близкий к истинному, то это пока еще не доказано опытами.

Для музыканта большое значение имеет наличие внутреннего слуха - способность воображать высоту звуков и (в частности) созвучий. Внутренний слух позволяет исполнителю составить представление о музыкальном произведении до его прослушивания, а композитору дает возможность создавать произведение без помощи инструмента.

§ 4. Для точного определения частоты колебаний звучащего тела применяются разнообразные приборы и методы.

Простейшим и наиболее старым методом является слуховое сравнение данного звука с другим, близким к нему по высоте звуком, частота колебаний которого точно известна, и последующий счет биений, возникающих между этими двумя звуками. Так например, если исследуемый звук дает с сравнительным звуком частоты 440 к/с полтора биения в секунду, а с другим сравнительным звуком частоты 444 к/с-два с половиной биения в секунду, то частота его колебаний будет равна 141,5 к/c, и так далее.

Однако слуховой способ сравнения труден, так как требует специальной тренировки слуха исследователя. А если испытуемый звук дается человеком (например, голосом, на скрипке и т. п., на духовом инструменте), то он обычно инстинктивно подстраивается ко второму, слышимому им звуку измерительного прибора. Поэтому результаты сравнения получаются неточными.

Более точное определение частоты колебаний звучащих тел дает стробоскопический метод сравнения. При этом исследуемый звук превращается в световые импульсы (вспышки лампы с тлеющим разрядом), освещающие систему вращающихся дисков с чередующимися черными и белыми секторами, соотношения скоростей которых пропорциональны соотношениям между числами колебаний какой-либо музыкальной системы. При совпадении числа колебаний исследуемого звука с числом проходящих секторов на каком-либо из измерительных дисков, изображение на последнем покажется остановившимся. Это есть момент унисона двух колебательных процессов.

В существующих наиболее распространенных стробоскопических частотомерах применены комплекты из 12 измерительных дисков, скорости которых настроены по равномерно-темперированной музыкальной скале. Особое приспособление позволяет плавно изменять скорость вращения всех дисков одновременно в пределах ±3%, что соответствует изменению высоты звуков в пределах ± половины полутона. Указатель на шкале прибора дает возможность, в момент достижения унисона с исследуемым звуком, сразу прочесть высоту последнего относительно ближайшего, нормального темперированного звука, с точностью до 0,01 полутона (т. е. до одного цента).

Прибор очень чувствителен, не требует от оператора специальной тренировки слуха, и не издает никаких звуков, к которым мот бы подстраиваться исполнитель.

Получаемые на нем в музыкальных (логарифмических) единицах высоты звуков могут быть, при надобности, переведены в соответствующие частоты колебаний (герцы), при помощи специальных таблиц.

Глава 3. Громкость звука.

§ 1. Силой или интенсивностью звука называется количество звуковой энергии, проходящей через единицу поверхности в единицу времени, а громкостью звука называется отражение в нашем сознании силы звука.

Громкость, которая является нашим ощущением, изменяется непропорционально силе звука. Увеличивая силу какого-либо звука в 2, 3, 4 раза, мы замечаем, что наше звуковое ощущение (громкость звука) не растет в указанных отношениях. Если, например, увеличить силу звука в миллион раз, то его громкость не возрастет также в миллион раз.

B 1846 г. физиолог Вебер установил количественную связь между ощущением и раздражением, вызывающим это ощущение. В дальнейшем (1860 г.) Фехнер подверг закон Вебера математической обработке, в результате которой был сформулирован общий психофизический закон Вебера - Фехнера, согласно которому ощущение изменяется пропорционально логарифму раздражения. Согласно этому закону, при увеличении силы звука в 100, 1 000 и т. д. раз ощущение увеличивается соответственно в 2,3 и т. д. раза.

Новые исследования зависимости громкости от силы звука показали большие расхождения с законом Вебера - Фехнера. Но для сравнения звуков по их силе, оказалось, очень удобно пользоваться этим законом.

Человеческое ухо способно воспринимать звуки, сила которых может изменяться в миллиарды раз. От порога слышимости до болевого порога звук увеличивается по силе (в средней области частот) в 100 000 000 000 000 раз. Естественно, что при оперировании такими величинами удобнее пользоваться их логарифмами.

Логарифмической единицей измерения при этом служит «фон», или «бел» (в честь изобретателя телефона Г. Белла).

Удобнее пользоваться «децибелом» - единицей измерения в десять раз меньшей бела. Децибел обозначается знаками db или дб. Таким образом, децибелом является единица измерения, выражающая едва заметный прирост громкости звука над уровнем шума в помещении или порогом слышимости. (Существует специальный прибор - шумомер для определения уровня громкости в дб)

Уровень громкости количественно может выражаться в дб. В этом случае за исходную величину принимается сила звука при пианиссимо.

Например (приблизительно):

пианиссимо оркестра = 55 дб

фортиссимо оркестра (вблизи) = 100 дб

шум пропеллера (вблизи) = 120 дб

Децибел является удобной величиной для определения динамического диапазона музыкальных инструментов и певческих голосов. В этом случае за исходную величину принимается сила звука при пианиссимо. Так, динамический диапазон рояля = 44 дб, виолончели = 38 дб.

§ 2. Если мы будем слушать звуки различных частот, но одинаковой силы, то эти звуки окажутся для нас различной громкости.

Для того, чтобы выяснять уровень громкости звуков различной частоты, были проведены эксперименты. Испытуемым давались два звука: один в 1 000 к/с, другой - произвольной частоты, и предлагалось отрегулировать силу звука в 1 000 к/с так, чтобы эти два звука были равной громкости. В результате большого числа такого рода экспериментов составилось представление о равногромкости различных звуков со звуком в 1 000 к/с.

Итак, два звука равной громкости, но разной частоты в общем случае имеют разную силу. Это явление объясняется различной чувствительностью нашего уха к звукам различной частоты. Человеческое ухо наиболее чувствительно к частотам от 500 до 3 000 к/с.

В музыкальной практике градации громкости обозначаются: ррр, рр, р, mр, mf, f,ff, fff.

Изменение громкости на одну ступень этой шкалы соответствует, по данным литературы, увеличению уровня громкости приблизительно на десять - двенадцать дб. Следовательно, градация громкости от ррр до fff обнимает от 70 - 85 дб. Измерение диапазона мощности (силы) симфонического оркестра как раз дало эти числа.

Однако новейшие исследования показали, что приведенные выше данные относительно градации громкостей недостаточно полны, так как в них не приняты во внимание громкость отдельных инструментов (ff на скрипке не может бытъ приравнено к ff тромбона), уровень шума в помещении (при большем шуме к помещении рр иное, чем при меньшем) и восприятие динамических оттенков различными лицами, а одним лицом - в различное время (у одного испытуемого при опытах ff соответствует 87 дб, а у другого - 112 дб; у одного и того же испытуемого р соответствует в различное время 63 дб и 76 дб).

Bce это говорит об относительности динамических оттенков, применяемых в музыкальной практике, и о зонной природе динамического слуха.

§ 3. Под действием звуков различной силы изменяется чувствительность уха. Например, звуки средней силы после слушания очень сильного звука будут казаться тихими. Те же звуки в тишине будут казаться громкими. Таким образом, чувствительность уха в относительной тишине повышается, а при различии звуков большой силы - понижается. Такое приспособление к звукам различной силы называется адаптацией слуха.

Изменение чувствительности уха происходит также вследствие продолжительного слушания звука. Если слушать звук большой силы в течение продолжительного времени (минуты и более), то громкость его будет постепенно падать вследствие понижения чувствительности уха. Если внезапно снизить силу звука, то падение его громкости будет весьма значительно. При восприятии кратких повторяющихся звуковых импульсов ухо успевает восстановить в перерывах свою чувствительность, поэтому громкость такого прерывистого звука не падает в течение долгого времени. Малая степень адаптации наблюдается также при восприятии звука с биениями.

§ 4. Бинауральным эффектом называется способность человека определять направление, в котором находится от него источник звука. Эта способность объясняется наличием двух ушей. Глухие на одно ухо с трудом определяют направление источника звука. В горизонтальной плоскости на открытом воздухе человек определяет направление при резких ударных звуках с точностью до 3°. В закрытых помещениях определить направление более трудно вследствие наличия отраженных звуков, идущих в различных направлениях. В вертикальной плоскости бинауральный эффект проявляется очень слабо, ввиду того, что уши расположены в горизонтальной плоскости.

Существует предположение, объясняющее бинауральный эффект разницей во времени прихода звукового импульса к правому и левому уху. Другое, более вероятное, предположение объясняет бинауральный эффект разницей в громкости звука, которое воспринимается правым и левым ухом. Последнее объяснение бинаурального эффекта не применимо в области низких частот, ввиду того, что разница в силе звука, приходящего к правому и левому уху, с понижением звука, вследствие дифракции у головы, значительно уменьшается; например, при частоте 300 к/с это составляет 1 дб.