Смекни!
smekni.com

О вопросах звуковысотного интонирования (стр. 3 из 3)

В связи с вышесказанным на первый план выходят две задачи, с которыми связано дальнейшее развитие музыкальной гармонии:

- нахождение музыкального строя, в котором весь звуковой состав оказался бы воспринят с помощью зон интонирования;

- описание механизма звуковысотного интонирования, то есть, каким образом интонирование приводит нас к определенным звуковым интервалам, и какие гармонические свойства, какие гармонические качества присваивает наше слуховое восприятие «ошибочно» настроенным интервалам, входящим в зону гармонического действия музыкальной ступени.

Список литературы

[1] Первый русский перевод: «Учение о слуховых ощущениях как физиологическая основа для теории музыки» СПБ, 1875.

[2] В академическом понимании, с одной стороны для наглядности, каждый обертон представляется на примере их соответствия ступеням хроматического звукоряда (см., например, Способин В.В. «Учебник элементарной гармонии» издания до 1998 г.). С другой стороны, в рамках каждого строя (12-ступенного равномерно-темперированного, пифагорова, чистого) за каждым музыкальным интервалом закреплено определенное гармоническое значение, выражаемое в числовом виде (приведенная таблица):

Номер интервала Наименование интервалов
12РТС Пифагоров строй Чистый строй
12345678910111213 М. секундаБ. секундаМ. терцияБ. терцияКвартаУв. квартаУм. квинтаКвинтаМ. секстаБ. секстаМ. септимаБ. септимаОктава 100200300400500600600700800900100011001200 90.2 (256/243)203.9 (9/8)294.1 (32/27)407.9 (81/64)498 (4/3)611.7 (729/512)588.3 (1024/729)702 (3/2)792.2 (128/81)905.9 (27/16)996.1 (16/9)1109.8 (243/128)1200 (2/1) 111.7 (16/15); 133.2 (27/25)182.4 (10/9); 203.9 (9/8)294.1 (32/27); 315.6(6/5)386.3 (5/4)498 (4/3); 519.5 (27/20)568.7 (25/18); 590.2 (45/32)609.8 (64/45); 631.3 (36/25)680.4 (40/27); 702 (3/2)813.7 (8/5)884.4 (5/3); 905.9 (27/16)996.1 (16/9); 1017.6 (9/5)1067 (50/27); 1088 (15/8)1200 (2/1)

То есть, за каждым интервалом закреплено конкретное гармоническое значение, что неправомерно, как будет показано в настоящей работе. Это значение определяет настройку ступеней в октаве для инструментов с фиксированным строем.

[3] На тему о древнегреческих строях имеется много публикаций, среди которых хотелось бы выделить работу Петра В. И. «О составах, строях и ладах в древнегреческой музыке» Киев, 1901 и работы Герцмана Е. (см. в библиографии).

[4] Пэрриш К., Оул Дж. Образцы музыкальных форм от григорианского хорала до Баха. Л., 1975, с. 51.

[5] Мы рассматриваем строи с учетом энгармонических замен, то есть до#=реb, ре#=миb и т.д.

[6] Очень часто такое интонационное значение большой терции называют уменьшенной квартой, но клавиша с таким названием отсутствует в 12-ступенном строе.

[7] Подробное описание возникновения одноименных интервалов с разной настройкой в Пифагоровом строе см. в приложении.

[8] Браудо Е. М. Всеобщая история музыки. Т. 1, Пб., 1922, с. 101-102.

[9] Переверзев Н. К. Проблемы музыкального интонирования. М., 1966. с. 56.

[10] Полная равномерная темперация определяется одинаковой настройкой одноименных интервалов во всем диапазоне звучания музыкального инструмента.

[11] Шерман Н. С. Формирование равномерно-темперированного строя. М., 1964.

[12] См., например, Переверзев Н. К. Проблемы музыкального интонирования. М., 1966.

[13] См. Рагс Ю. Н. Концепция зонной природы музыкального слуха Н. А. Гарбузова. // Н.А.Гарбузов - музыкант, исследователь, педагог. М., 1980, с. 16. В современных строях с «чистой интонацией» встречается разделение октавы на более чем 600 ступеней (см. музыкальную программу Scala по адресу http://www.xs4all.nl/~huygensf/scala/ и приложения к ней).

[14] Гарбузов Н.А. Зонная природа звуковысотного слуха. // Н.А.Гарбузов - музыкант, исследователь, педагог. М., 1980, с. 89.

[15] Там же.

[16] Там же.

[17] Н. А. Гарбузов, подразумевая, что они приняты музыкальной наукой, никак их не определяет, поэтому мы будем называть их «музыкальными» (кавычки будут опущены, но иметься в виду).

[18] Н. А. Гарбузов по-своему разъясняет их происхождение, но это не существенно для данной работы.

[19] Рисунок приведен из работы: Гарбузов Н.А. Зонная природа звуковысотного слуха. // Н.А.Гарбузов - музыкант, исследователь, педагог. М., 1980, с. 94.

[20] Результаты исследований не являются абсолютно точными в силу исследования субъективных восприятий.

[21] Точнее – музыкальной ступени.

[22] Музыкальных ступеней.

[23] Рагс Ю.Н. Концепция зонной природы музыкального слуха Н.А.Гарбузова. // Н.А. Гарбузов - музыкант, исследователь, педагог. М., 1980, с. 27.

[24] Замена в цитате «звуками» на «музыкальными ступенями» - моя (Автор).

[25] Рагс Ю.Н. Концепция зонной природы музыкального слуха Н.А.Гарбузова. // Н.А. Гарбузов - музыкант, исследователь, педагог. М., 1980, с. 27.

[26] Понятие «фальшивый» не совсем точно. Под этим подразумевается только то, что в данной настройке мы не услышим б. терцию в качестве звукового интервала с коэффициентом 5/4. Но при этой настройке мы можем услышать этот музыкальный интервал в качестве звукового с коэффициентом 9/7, что для современной (и даже более ранней) гармонии вполне естественно. Но об этом мы будем говорить позже.

[27] Пифагоров строй также рассчитан математически, просто в качестве исходного для расчетов интервала бралась квинта. Но ее природный феномен не заменяет природных феноменов других обертонов и, следовательно, не позволяет утверждать в полной мере природного происхождения пифагорова строя. Также и природный феномен большой терции не позволяет через нее определять звуковысотные значения для других музыкальных ступеней и интервалов в «чистом» строе.

[28] Они могут быть воспроизведены на инструментах с нефиксированным строем, но в современной теории музыкальной гармонии их гармонические (звуковысотные) функции необъяснимы.