Смекни!
smekni.com

Математическая мифология (стр. 6 из 9)

То, что математик занимается при этом именно пространственно-временными отношениями, хорошо иллюстрируется широким применением в математике аксиоматического метода. Ведь главная его идея состоит в сведении определения объекта к указанию системы отношений, в которых этот объект может находиться с другими объектами той же теории.

Итак, в эстетическом аспекте математическое мышление предстает перед нами как пространственно-временное конструирование, которое может выступать либо в форме собственно геометрического конструирования, либо как квазигеометрическое конструирование, т.е. манипулирование графическими символами.

Что изучает математика?

Пространственно-временные конструкции.

Как она это делает?

Посредством разворачивания пространственно-временных конструкций другого уровня.

Такой взгляд на природу математики может быть охарактеризован как пангеометризм (14) . Для него ключем к пониманию специфики математического мышления является именно образный аспект математики, понятийно-логический же аспект рассматривается при этом как вторичный.

4. Математика мистиков, философов, поэтов и традиционная история

математики (Вместо заключения).

Разворачивание математических пространственно-временных конструкций способно вызывать особое чувство красоты, которое без сомнения служит важнейшим психологическим стимулом, как к профессиональным, так и к любительским занятиям математикой. Как всякая подлинная красота, математическое действо обладает магическим обаянием. Оно способно создать в нас ощущение прикосновения к тайне, а порой и религиозный восторг.

Это безошибочно угадал особенно чуткий к такого рода вещам Новалис (Фридрих фон Гарденберг, 1772-1801). В его “Фрагментах” (в первую очередь имеются в виду “гимны к математике”, как назвал их Вильгельм Дильтей) мы находим отчетливое выражение этих мыслей: “Истинная математика - подлинная стихия мага. Истинный математик есть энтузиаст per se. Без энтузиазма нет математики. Жизнь богов есть математика. Чистая математика - это религия. На Востоке истинная математика у себя на родине. В Европе она выродилась в сплошную технику” [19, с.153]. Новалис убежден, что поэт понимает природу лучше, чем ученый. Не ученому и созданной благодаря его усилиям технике дано овладеть миром, но поэту, способному расслышать сокровенный ритм мироздания. Не извне, но изнутри обретается мир. “Истинная математика” Новалиса - это та математика, которая позволяет нам уловить этот скрытый ритм. “Всякий метод есть ритм: если кто овладел ритмом мира, это значит, он овладел миром. У всякого человека есть свой индивидуальный ритм. Алгебра - это поэзия. Ритмическое чувство есть гений” [19, с.152].

Современная математическая культура мало располагает нас к пониманию того, что это за истинная математика (которая в то же время есть истинная поэзия, истинная религия и истинная магия), о которой так вдохновенно говорит Новалис (15) . Может быть поэтому мы так плохо понимаем и математику пифагорейско-платонической традиции, а также многие другие феномены европейской духовной культуры столь же необычно для нас воспринимающие математику и развивающие ее. И дело здесь не столько в культурной гордыне, сколько в реальных барьерах мешающих пробиться к существу реалий иной культуры. Пример того, что удается увидеть современному математику, обратившемуся к “второстепенным страницам истории” дает книга Дэна Пидоу “Geometry and the Liberal Arts” (1976). Автору остается лишь огорчаться, что мы утратили способность восхищаться природой простых геометрических фигур, и надеяться, что “неопифагорейские учения все же получат распространение в культуре грядущих поколений” [20, с.207]. Несомненно, более удачными следует признать попытки П.А.Флоренского и А.Ф.Лосева, которые и явились главными вдохновителями моего интереса к данной области, однако внимательное знакомство с их трудами еще раз убеждает насколько серьезные трудности приходится преодолевать на этом пути.

Мартин Дайк, автор монографии, посвященной математическим фрагментам Новалиса, говорит о своей книге: “Настоящее исследование отчасти предпринято для тех математиков-профессионалов, которым может случиться ознакомиться с фрагментами Новалиса и обнаружить, что математические понятия применяются здесь, хорошо или плохо, но к таким предметам, которые не принято рассматривать математически, которые не укладываются в рамки установившихся математических представлений, и это будет склонять их к выводу о том, что такие фрагменты не могут, вероятно, иметь какого-либо смысла. Можно принять с самого начала, что эти относящиеся к математике фрагменты философичны, но не техничны. С позиции строгого математика они неточны (unrigorous), произвольны (arbitrary) и не вносят никакого вклада в технические аспекты математической науки. Не успевает Новалис проникнуть в великолепное по своей стройности здание математики, как оказывается, что он уже успел незаконным образом расширить его границы (transgressed its boundaries), углубившись в джунгли философских идей, в которые ни один математик, оставаясь математиком, не решится за ним последовать, из опасения, что почва там слишком зыбкая (the ground too slippery) и доказательство бессильно укротить (and prove defenceless among) диких зверей, населяющих эти темные области”. Желая следить за полетом мысли Новалиса, уводящей нас в этом направлении, мы не можем обойтись без постоянной оглядки на официально принятые результаты, постоянного соотнесения с общепринятым содержанием тех математических областей, в которые он вторгается, однако “нам не следует использовать эти официальные стандарты в качестве абсолютных и пригодных для любой ситуации мерок (as measuring rods with absolute and exclusive value)”, и тогда “в его на первый взгляд фантастичных идеях о математике можно будет разглядеть глубокие прозрения о природе этой науки” [41, p.2-3].

То, что говорит М.Дайк о современном математике-профессионале, может быть, к сожалению, слишком часто повторено и о современном историке математики, над которым также в полной мере имеют власть стереотипы профессионального математического образования. В результате, мы попросту весьма плохо знаем “второстепенные” страницы истории математики, а тем более плохо представляем себе их роль в развитии того, что помещается нами на “основных” ее страницах. Книга М.Дайка представляет собой скорее исключение, чем правило. Но можно ли априори утверждать, что роль эта невелика, когда мы едва знаем в лицо тех, чью роль спешим умалить?

Историческое исследование неизбежно предполагает отбор материала. История культуры может быть уподоблена сложнейшей паутине, где каждое культурное событие есть “узелок”, связанный необозримым числом тончайших “нитей” с другими “узелками”. Поэтому, всякое изучение этой “паутины” состоит в выделении основных “узелков” и связей между ними, и игнорировании второстепенных. Однако, вызывает серьезные сомнения возможность адекватной и однозначной оценки “на глаз” того, какие “узелки” и какие “нити” являются основными. В отношении “зрительного восприятия” такой “паутины”, судя по всему, может и должен проявляться хорошо известный эффект переключения зрительного гештальта. При этом переключении выбор основных “узелков” и “нитей” может существенно изменяться. Какую конфигурацию “узлов” и “нитей” мы выделим из необозримого множества всех возможных, зависит от нашей установки. Что мы “увидим” (“два профиля” или “вазу”) зависит от нас. Наше математическое образование готовит нас к тому, чтобы всегда видеть “два профиля” и никогда “вазу”, но это вовсе не означает, что первое представляет собой адекватное выделение основного, тогда как второе - нет. Пафос настоящего доклада как раз и состоит в том, чтобы напомнить о возможности смотреть как на саму математику, так и на ее историю sub specie artis, т.е. видеть “вазу” там, где обычно видят лишь “два профиля”.

Приведем еще несколько примеров традиционно “второстепенных” страниц истории математики, которые, с проводимой нами точки зрения, оказываются в числе основных.

О йенском профессоре математики и астрономии Эрхарде Вейгеле (Erhard Weigel, 1625-1699) можно сейчас услышать в основном в связи с биографией Лейбница, на которого он оказал неоспоримое влияние. Некогда “всемирно известный”, “знаменитейший профессор математики”, создавший в Йене сильную школу математики и физики [10, с.135] в настоящее время практически полностью забыт. Уже для Морица Кантора математика Вейгеля всего лишь пример характерного для немецких университетов того времени отсутствия потребности в математике [29, с.8-9]. В настоящее время, многочисленные работы Вейгеля практически невозможно найти в библиотеках, они не переиздаются и не переводятся. Редко в каком энциклопедическом словаре найдешь статью о нем. В чем же дело? А дело в том, какой математикой занимался Вейгель.

В центре его внимания - создание единой системы знания (включающей в себя как богословие, так и все явления физического и социального порядка) на основе универсального логико-математического метода, и реформа на этой основе современной ему системы образования. Он убежден во всеобщей приложимости математического метода и стремится к сближению на этой почве всех отраслей человеческого знания. Его девиз: omnia mensura, numero et pondere. На основе сочетания метода Евклида (сведение содержания науки к ее основным элементам) и Аристотеля (выведение из этих элементов следствий посредством силлогизма) он стремится построить рациональную теорию науки, задача которой - познать мир как sillogismus realis. При этом аксиомы выступают как законы природы, а выводимые из них следствия являются не только необходимыми, но и реальными. Вейгель развивает идею “всеобщей математики” (Mathesis universae) или “пантометрии” (Pantometria), которая распространяется им не только на физический, но и на гражданский мир. Позднее он будет развивать мысль, что “пантогнозия” (Pantognosia), или способ точно знать, что бы то ни было, сводится к измерению и счету всех предметов познания, ибо достоверно только количественное знание. Отсюда естественно вытекает “пантология” (Pantologia) - взгляд на мир, как на такую систему вещей, в которой все имеет свою логику. В этом контексте он писал о моральной арифметике, т.е. о сведении всех нравственных качеств к количествам; разрабатывал практическую этику на арифметической основе; занимался изучением проблемы зла с математической точки зрения; доказывал “геометрически” бытие Божие и т.д. [29; 10, с.39-41].