Санкт-Петербургский государственный технологический
институт
(Технический университет)
Кафедра автоматизации процессов химической промышленности.
“Автоматизация процесса нитрования пиридона”.
Пояснительная записка к курсовому проекту по учебной дисциплине
“Проектирование систем автоматизации ”.
Выполнил студент 891 гр. :
Солнцев П.В.
Руководитель:
Новичков Ю.А.
Санкт-Петербург
2004
Исходные данные.____________________________________________ 3
Введение.___________________________________________________ 3
1. Описание технологического процесса.________________________ 5
2. Описание УВК.___________________________________________ 5
3. Основные решения по автоматизации.________________________ 9
4. Разработка принципиальной схемы автоматизации.____________ 10
5. Компоновка средств автоматизации на щитах.________________ 10
6. Построение электрических схем автоматизации._______________ 10
7.___________________________________ Схемы внешних проводок. 11
Список использованной литературы:___________________________ 13
Приложения.
1 Расходы (объёмные):
1.1 хладоагента в рубашках реактора и стаб-ра Gхл = 3,8 м3/час
1.2 кислоты на входе реактора Gк = 0,3 м3/час
1.2 нитромассы на выходе из реактора Gвых = 1,3 м3/час
1.3 пиридона на входе реактора Gп = 1 м3/час
1.4 воды на входе стабилизатора Gвод = 2,6 м3/час
1.5 готовой смеси на выходе стабилизатора Gкон = 2,6 м3/час
2 Концентрации азотной кислоты
2.1 на входе в реактор Скн = 0,6 кмоль/м3
2.2 на выходе из реактора Скк = 0,132 кмоль/м3
3 Объёмы
3.1 реактора V = 6 м3
3.2 жидкой фазы в реакторе с коэффициентом заполнения 0,8
Vж = 0,8*6 = 4,8 м3
4 Температуры:
4.1 нитромассы на выходе реактора q1 = 410C
4.2 смеси на выходе из стабилизатора q2 = 200C
4.3 хладоагента на выходе из реактора q1хлк= 150C
4.4 хладоагента на выходе из стабилизатора q2хлк= 210C
5 Порядок реакции n = 1
5.1 нитромассы в реакторе L1 = 1,5м
5.2 воды в сбросной ёмкости L3 = 3м
5.3 смеси в стабилизаторе L2 = 1,5м
6 Вакуум
6.1 в линии отвода окислов 300 гПа
Введение.
Автоматизация технологических процессов является одним из решающих факторов повышения производительности и улучшения производственного процесса. Все существующие и строящиеся промышленные объекты в той или иной степени оснащаются средствами автоматизации.
В данной курсовой работе разрабатывается проектная автоматизация процесса нитрования пиридона.
Целью курсового проекта является разработка функциональной схемы автоматизации, компоновка средств автоматизации на щитах и пультах, построение и оформление электрических и пневматических схем автоматизации, выполнение схем внутренних и внешних проводок.
1. Описание технологического процесса.
В качестве объекта автоматизации рассматривается реактор полного смешения непрерывного действия с рубашкой и мешалкой (рис 1).
Смесь пиридона с уксусным ангидридом (с параметрами Gп, qп, Срп) подаётся на вход реактора (1). Туда же подаётся азотная кислота (с параметрами Gк, qк, Скн, Срк). Процесс идёт при температуре q1; съём тепла осуществляется подачей холодной воды (с параметрами Gхл, qхлн, Срхл) в рубашку реактора. Из реактора нитромасса (с параметрами Gвых, qвых, Скк, Срвых) поступает в стабилизатор (2), где охлаждается холодной водой до температуры q2 и разбавляется водой в соотношении 1:2, после чего идёт на стадию кристаллизации (с параметрами Gсм, qсм, Срсм).
На случай аварии предусмотрена сбросная ёмкость (3), заполненная водой. Все аппараты, содержащие азотную кислоту, соединены с ловушкой окислов азота (4) и линией разряжения.
Процесс нитрования пиридона протекает при температуре q1, давлении Р и уровне жидкости h1. Азотная кислота является ключевым компонентом. Расход уксусного ангидрида с пиридоном определяется производительностью предыдущего аппарата и по нему действует возмущение.
Характеристика | Модуль FP2-16XD2 | Модуль FP2-64XD2; ЦПУ FP2-C1D |
Число каналов | 16 | 64 (2 группы по 32) |
Гальваническая развязка | Оптронная | Оптронная |
Номинальное Uвх, В | 12 - 24 | 24 |
Максимальный Iвх, мА | 10 | 5 |
Потребляемый модулем ток от источника питания контроллера, мА | 80 | 100 |
2. Модули вывода дискретных сигналов постоянного тока.
Модули вывода дискретных сигналов представлены более широко: это прежде всего модули вывода FP2-Y16T и FP2-Y16P - 16 каналов с клеммным соединителем и открытым коллектором на npn и pnp транзисторах соответственно. Аналогичные модули на 64 канала с разъемами: FP2-Y64T и FP2-Y64P. Кроме того, в комплекте модулей УСО FP2 имеются релейные модули вывода FP2-Y6R (6 каналов) и FP2-Y16R (16 каналов). Характеристики модулей приведены в табл.2
Табл.2. Характеристики модулей вывода дискретных сигналов
Характеристика | Модули FP2-Y16T,FP2-Y16P | Модули FP2-Y64T,FP2-Y64P | МодулиFP2-Y6R*) | Модули FP2-Y16R*) |
Число каналов | 16 (2x8) | 64 (2x32) | 6 (3x2) | 16 (2x8) |
Гальваническая развязка | Оптронная | Оптронная | Оптронная | Оптронная |
Напряжение нагрузки (внешнего источника), В | 5 - 24 | 5 - 24 | 250 (AC),30 (DC) | 250 (AC),30 (DC) |
Максимальный ток нагрузки, А | 0,6 | 0,1 | 5 | 2 |
Ток потребления от источника питания контроллера, мА | 100 | 250 | 70 | 120 |
*) Внимание. Для питания реле эти модули требуют дополнительного источника напряжения 24В DC (см. рис.6Б) |
3. Модули ввода/вывода дискретных сигналов постоянного тока.
В составе FP2 есть комбинированные модули ввода/вывода FP2-XY64D2T и FP2-XY64D2P. Модули имеют по 32 канала на вход и выход с разъемом для соединения с внешними устройствами и характеристиками, по входам совпадающими с характеристиками модулей FP2-64XD2, а по выходам – с модулями FP2-Y64T, FP2-Y64P.