Смекни!
smekni.com

Билеты по технологии отрасли (стр. 14 из 15)

В воздухе - 331 м/c, в воде - 1500 м/c, в металлах - 5100м/с.

Механические преобразователи.

Первые (в воздухе, в воде) преобразуют мех. потоки жидкости и газа в ультразвуковые колебания или электрические

Схема:


Вырывание струи воздуха – звук

Электрические преобразователи:

А)Магнитострикционные

Б)Пьезокерамические

А)Металический сердечник вносят в переменное маг. поле, он будет менять свои размеры:

18 кГц - источник ультра звуковых колебаний

Б) основан на обратном пьезо эффекте. К кристаллу кварца прикладывают усилие, в результате чего появляется электрический заряд «+». Если передавать через кристалл эл. маг. поле - он будет изменять форму и излучать электро-звук. Используют материал ВаTiO3, с частотой выше 40 кГц, дельта L =5-10

Если приток Ф концентрата, то можно усилить колебания.

Ультразвуковая микро обработка.

Она представляет собой разновидность механической обработки, основанную на разрушении обрабатываемого материала абразивными зёрнами под ударами инструмента, колеблющегося с ультразвуковой частотой. Источником энергии служат электрозвуковые генераторы тока с частотой 18-44 кГц. Ультразвуковые колебания инструмента создаются - магнитострикционных вибраторов. Рабочий инструмент пуансон - закрепляют на волноводе генератора. Под пуансоном устанавливают заготовку, и в зону обработки поступает суспензия, состоящая из воды и абразивного материала. Инструмент, колеблющийся с ультразвуковой частотой, ударяет по зёрнам абразива, лежащим на обрабатываемой поверхности, которые скалывают частицы материала заготовки. Инструмент совершает ультразвуковые колебания (с амплитудой А = 0,02.-0,05 мм и скоростью V) и воздействует на заготовку. В рабочую зону подаются взвешенные абразивные зёрна 2 (обычно карбида бора) и наблюдается два основных процесса:

1) ударное вдавливание абразивных зёрен, вызывающее выкалывание небольших частиц материала заготовки,

2) циркуляция и смена абразива в рабочей зоне для уноса выкалываемых частиц материала заготовки и доставки свежего абразива.

Размер выкалываемых частиц небольшой, однако количество ударов велико (18000...44000 удар/с).

Ультразвуковая размерная обработка используется для получения твердосплавных вкладышей матриц и пуансонов, вырезания фигурных полостей и отверстий в деталях, гравирования, нарезания резьбы.

Этим методом обрабатываются детали из твёрдых хрупких материалов (керамика, стекло, кварц, и др.). Преимущество ультразвукового метода перед электроэрозионным - более высокое качество поверхностного слоя, обычная температура.

Ультразвуковая очистка.

В моечную ванну в дно встраивается магнитострикционный преобразователь

При его работе возбуждаются мощные ультразвуковые колебания, мелкие детали в сетке опускаются в ванну, колебания интенсифицируют процесс очистки (детали приборов часов). Сокращается расход моющих средств в 2 раза. Улучшается качество очистки.

Ультразвуковая пайка и сварка

Происходит по следующей схеме:

На торец звукового усилителя жестко прикрепляется спец наконечник, детали укладывают на опору и прикрепляют.

Включают звуковые колебания, которые приводят к интенсивному сдвигу скольжения поверхности относительно др. др. В результате поверхности очищаются, интенсифицируется диффузия-сварное соединение.

Таким способом варятся металлы с близкими пределами текучести (хорошо свариваются алюминиевые детали), молибден, цирконий, титан и др. редко земельные металлы. А также неметаллические материалы – пластмассы сплавляют с керамикой. Особенно эффективно: приварка к толстой подложке тонкого элемента.

Пайка – процесс обычной пайки, только к паяльнику прикрепляется магнитострикционный преобразователь. Жало паяльника совершает высокочастотные звуковые колебания в процессе пайки. Это дает улучшение очистки поверхности, смачиваемости и т.д. Недостаток этого метода низкий кпд преобразователя.

№44. Лазерная обработка в машиностроении.

Лазерная обработка.

ОКГ- оптически квантовый генератор, изобретен учеными физиками в 60 годы. В лазерах научились получать излучение – пучок фотонов.


Торцы полируются, их длина кратна длине излучения волны


Эти 2 элемента помещаются в 2 полюсах эллипса. Луч выходит из лампы и всегда попадает в активный стержень, электроны переход на верхн орбиты. В стержне возникают продольные колебания и фотоны вырываются из полупрозр зеркала, возникает поток лучей. Этот пучок света концентрируют через оптические системы в луч, плотность возрастает и температура может достигнуть 600-8000С.

Прошивание отверстий.

Очень маленький диаметр получаемых отверстий 0,003-1мм при толщине металла 1-3мм

Точность получаемых отверстий не высокая. Наиболее эффективно применяется при прошивке отверстий в алмазных фильерах, прошивание отверстий в рубиновых часовых камнях

Лазерная резка

Используют газовые лазеры СО2 работают в непрерывном режиме. Применяют для резки тонко листовых материалов, различных пленок на диэлектрических подложках, пластмассе, резине. Эти станки снабжаются системой ЧПУ, что дает возможность вырезать очень сложные формы. Лазерная сварка может быть точечной и шовной. Толщина свариваемой детали от 0,001-1мм. Наиболее эффективно применение в трудно доступных местах, при соединении легко деформир деталей в условиях интенсивного тепло отвода. Может осуществляться в замкнутом объеме.

Термообработка

Для упрочнения закалки тонких не жестких деталей путем местного, пятнистого нагрева - интенсивная закалка.


№45. Изготовление деталей из пластмасс.

Пластмассы - новые материалы, отсутствующие в природе появившиеся в результате техн. прогресса в ХХв. Их широкое применение обусловлено рядом специфич. свойств: малая плотность при удовлетворительной технологической прочности, высокая химическая коррозионная стойкость(не ржавеет), обладает хорошими электроизоляционными свойствами. Применяют их в машиностроении, обеспечивая экономию дорогих цветных металлов, снижение массы изделий, повышение долговечности и снижение трудоемкости. Большим преимуществом технологии изготовления пластмасс - совмещение процесса формообразования заготовки и получения готовых деталей (нет раздельных процессов). Детальность пластмассы требует незначительной механической доработки. Процесс переработки характеризуется высоким процентом используемых материалов 0.85-0.95, высокий уровень автоматизации и механизации, большинство процессов выполняется на одном рабочем месте.

Пластмассы – неметаллические материалы, представляющие собой сложные композиции высокомолекулярных соединений. Могут находиться в аморфном и кристаллическом состоянии. Переход связан с резким изменением их физико-мех. свойств. Существенное влияние оказывает теплота, в зависимости от характера влияния теплоты все пластмассы делятся на 2 класса:

1) Термопласты, 2) Реактопласты. Термопласты - полиэтиленовые, капроновые, полистирольные, фторопластмассы размягчаются и плавятся при повышенной температуре и вновь затвердевают при охлаждении. Процесс может многократно повторятся без ухудшения свойств. Реактопласты - различные текстолиты, пресс материалы, стеклопластики. При нагревании исходных компонентов переходит в вязко-текучее состояние, но с завершением хим. реакции становится твердым и больше не могут размягчатся.

По своим механическим свойствам делятся: 1)жесткие - имеют незначительное удлинение, называются пластиками, 2)мягкие - обладают большим относительным удлинением, низкой упругостью наз. эластики.

В зависимости от числа компонентов:

1)простые, 2)композиционные(3-4 и 10 компонентов)

Способы переработки пластмасс подразделяют на группы:

· Перерабатывают в вязком текущем состоянии: прессованием, давлением, выдавливанием.

· Пер-ка в высокоэластичном состоянии: штамповка, пневмо- и вакуум-формовка.

· Получение деталей из жидких полимеров: литье.

· Переработка в твердом состоянии: резка, механическая обработка.

· Получение неразъемных соединений: сварка, пайка, склеивание.

· Прочие способы: напыление, спекание и др.

Прессование – производство выполняется в металлических пресс-формах с одной или несколькими формовыми полостями - матрицами. В них пластмасса подается в исходном состоянии в виде порошков, таблеток. Под воздействием тепла и давления пресс-мат. заполняет формирующие полости, приобретая требуемую форму и размер, здесь же протекает процесс полимеризации.