7. Механический фактор.
Приведённая ниже таблица наглядно демонстрирует изменение механических характеристик хромистой стали по сравнению с углеродистой :
Характеристика | Сталь углеродистая (0.25%С) | Хромистая сталь (13%Cr) |
Предел прочности , кг/мм^2 | 39 | 62 |
Предел усталости при N=5*10^7 циклов , кг/мм^2 | 16.5 | 38 |
Условный предел коррозионной усталости при N=5*10^7 циклов , кг/мм^2 в пресной воде в морской воде | 12 --- | 26 21 |
Как видно из таблицы , все вышеприведённые механические показатели для хромистой стали почти в 2 раза выше , чем для углеродистой . Не оставляет сомнений тот факт , что качественный уровень хромистой стали гораздо выше , чем углеродистой , хотя бы даже из-за возможности применения хромистой стали в морской воде .
8. Кавитационное воздействие.
При больших скоростях движения в жидкости образуются пространства с пониженным давлением в виде вакуумных пузырей . Гидравлические удары , возникающие при замыкании этих пузырей на поверхности металла , создают пульсирующие напряжения , которые разрушают не только защитные плёнки , но и структуру самого металла со скоростями иногда доходящими до 75 мм/год . Этот особый вид коррозии называют кавитационной коррозией . На кавитационную стойкость металлов и сплавов большое влияние оказывает механическая прочность , структура и состояние границ зёрен сплава .
Особой устойчивостью к кавитационной коррозии отличается сталь 30Х10Г10 , которая самоупрочняется в процессе кавитации .
Повышения коррозионно-кавитационной стойкости деталей машин достигают наряду с другими необходимыми мероприятиями ещё и повышением прочности и коррозионной устойчивости сплава (легирование хромом , никелем и др.) , а так же нанесением различных покрытий (наплавкой более стойки сплавов ,хромированием , с помощью армированных эпоксидных покрытий и др.) .
Заключение.
Следуя вышесказанному мы можем говорить о том , что даже незначительные добавки хрома в углеродистую сталь делают её коррозионностойкой , кислотостойкой , улучшают её механические характеристики (повышается пластичность с увеличением прочности) , повышается её термодинамическая устойчивость а следовательно значительно расширяют область применения этих сталей . Так стали типа Х13 - самые распространённые и наиболее дешёвые нержавеющие стали ; их применяют для бытовых назначений и в технике (лопасти гидротурбин , лопатки паровых турбин) . Стали эти хорошо свариваются . Из сталей 2Х13 и 4Х13 изготавливают детали повышенной прочности благодаря их хорошим механическим свойствам. Сталь Х17 можно применять как жаростойкую при рабочих температурах до 900°С , стали с содержанием Cr 25-28 % работают при температурах 1050-1150°С .
Большим недостатком этих сталей является то , что возникающая при перегреве (например при сварке) крупнозернистость не может быть устранена термической обработкой , так как в этих сталях нет фазовых превращений . Крупнозернистость создаёт повышенную хрупкость стали (порог хладноломкости переходит в область положительных температур).
СПИСОК ЛИТЕРАТУРЫ.
Н. П. Жук «Курс коррозии и защиты металлов».
А. П. Гуляев «Металловедение».
Под редакцией Туманова А. Т. «Методы исследования механических свойств металлов».
А. В. Бакиев «Технология аппаратостроения».