а
с/a > 1
О. Ц. К. (Fea)a=2,8 A° (с/а=1)Г.Ц. К. (Feg) a=3,6 A° О. Ц. К. тетрагональнаяПри переохлаждении аустенита Г. Ц. К. решётка становится неустойчивой . Несмотря на то , что скорость диффузии при низких температурах мала , происходит
обратное перестроение кристаллической решётки без выделения углерода (бездиффузионный процесс) . То есть процесс , показанный на рис. 1 идёт в обратном направлении : Г. Ц. К.
О. Ц. К. ( большая степень тетрагональности ).При малых температурах скорость диффузии мала , следовательно превращение идёт очень быстро . Атом углерода не может выйти из кристаллической решётки и вытягивает её в объёмноцентрированную .
Feg(C) Fea(C) ( Ау М)Так как процесс бездиффузионный , концентрация углерода в мартенсите будет такая же , как и в аустените .
Процесс кинетикоматренситного превращения протекает не до конца. При фактическом окончании процесса ещё остаётся некоторое количество остаточного аустенита ( Аост.) . Остаточный аустенит снижает твёрдость стали[4] .
Рис. 2
Аат Аост. На температуру начала и конца мартенситного превращения влияет состав стали , в частности содержание углерода.
Мн 20°С Мк
T,°CРис. 3 C увеличением концентрации углерода температура начала мартенситного превращения понижается , а температура конца мартенситного превращения при концентрации углерода более 0,4 % переходит в Мн область отрицательных температур .0,2 0,4 0,6 0,8 1 1,2 %C
Мк
Бездиффузионное мартенситное превращение.
Т,°СРис. 4Vкр. =( А1 - tm )/tmA1 - 727°C
tm - температура у изгиба С-образной кривойtm - время
Типичным в кинетикомартенситном превращении является следующее :
1. превращение происходит в интервале температур Мн - Мк .
2. превращение протекает путём образования всё новых и новых кристаллов мартенсита , а не роста ранее образовавшихся .
Рис. 5
Зерно аустенита :1.
до нагрева ,2.
после нагрева.