2. Механизация безлюдной выемки. Наиболее освоенной системой разработки весьма тонких пологих пластов является система с бурошнековой выемкой. Данная система применяется для разработки пологих пластов мощностью 0,4-1,6 м при любых кровлях (включая легкообрушающиеся и ложные), пластов со сложной гипсометрией сильно нарушенных участков, а также для погашения охранных целиков угля.
При бурошнековой выемке уголь выбуривается специальными установками, размещенными в выемочных штреках. Серийные бурошнековые установки позволяют бурить скважины длиной до 40 м в обе стороны. Транспортирование угля по скважине до штрека осуществляется шнеками буровых штанг.
Из-за значительных потерь угля (40-50%) и невысокой производительности установки бурошнековая выемка применяется пока только при погашении целиков и разработке пластов угля невысокого качества.
В ряде бассейнов нашей страны испытана безлюдная выемка угля канатной пилой. При выемке канатной пилой подэтаж разрезают скважинами на столбы по восстанию. Через скважины пропускают два каната. Концы канатов через направляющие блоки идут к приводу на вентиляционном или промежуточном штреке. Ко вторым концам над крепью промежуточного или откаточного штрека закрепляют пилу – отрезок каната или цепи с насаженными на них кулаками, армированными зубками или специальными фрезами.
Возвратно-поступательным движением пилы в столбе угля вырезают щель, и массив угля под действием силы тяжести и давления боковых пород разрушается и обрушается.
Очистное пространство не крепят, в связи с чем ширину столбов принимают от 4 до 8 м и длину от 30 до 7 м в зависимости от размера площади устойчивого обнажения боковых пород. В соответствии с шагом обрушения через каждые 1-4 столба оставляют режущий (барьерный) целик или возводят до печи режущую органную крепь. Выемку ведут с опережением верхними подэтажами нижних. Отбитый уголь из верхних подэтажей доставляют конвейерами на передовой скат.
Данную систему применяют на пластах с углом падения 50о и более с рыхлыми или трещиноватыми и хрупкими углями мощностью от 0,25 до 5-6м и устойчивыми или средней устойчивостью боковыми породами. Потери угля в случае применения этой системы превышают 30%, что также не позволяет широко использовать эту систему разработки.
3. Углевыемка без постоянного присутствия людей в очистном забое. Осуществляется с помощью очистных фронтальных агрегатов типа АК-4, А-3, АФК, Ф1. Фронтальная технология выемки угля с применением фронтальных агрегатов по сравнению с узкозахватной обладает следующими принципиальными преимуществами:
· работы по выемке угольного пласта и передвижению секций крепи ведутся одновременно по всей длине очистного забоя, для обеспечения высокопроизводительной работы не требуется высоких скоростей резания угля и перемещения секций крепи: резание угля при струговом исполнительном органе ведется в направлениях вдоль напластования с поверхности забоя, где уголь наиболее отжат, с постоянной и оптимальной глубиной резания равной 10-15 см, со скоростью резания не более 1 м/с, что обеспечивает максимально возможное улучшение сортности добываемого угля, снижение пылеобразования и уменьшение энергоемкости процесса разрушения 1 т угля до 0,3 кВт.ч;
· однооперационный процесс выемки угля без специальных концевых операций и сосредоточение в агрегате как едином целом средств выемки, доставки и крепления создают более благоприятные условия для осуществления автоматического и дистанционного управления, с целью осуществления выемки угля без постоянного присутствия рабочих в очистном забое;
· при струговом способе разрушения угля и групповом способе передвижения секций крепи создается минимальное обнажение рабочего пространства (не более 2м2), что создает возможность эффективной работы в условиях пластов со слабыми и неустойчивыми породами кровли;
· эффективность работы угледобывающих агрегатов как единого целого в меньшей степени зависит от угла залегания пласта.
При создании средств механизации угледобычи на крутых и тонких пластах необходимость перехода на фронтальную технологию выемки с применением угледобывающих агрегатов особенно назрела. Это объясняется тем, что присущее очистным узкозахватным комплексам противоречие между необходимостью дальнейшего увеличения скорости движения комбайна и ограниченными возможностями крепи и обслуживающего персонала по обеспечению оперативной передвижки крепи вслед за комбайном при переходе на крутой и особенно на тонкий пласт становится неразрешимым.
Прогрессивность применения фронтальных агрегатов базируется на принципиально новом процессе отбойки угля – силовом резании одиночными резцами. Особенность этого способа заключается в высокоэффективном отделении одиночным резцами больших сечений стружки, работе в направлении напластования и в наиболее отжатой зоне – по всей поверхности открытого забоя. Существенное увеличение толщины стружки до оптимально величины – 100 – 150мм позволит резко улучшить сортность добываемого угля, уменьшить до минимума пылеобразование и снизить энергоемкость процесса разрушения 1 т угля в среднем до 0,2 – 0,3 кВт.ч, или в 3-5 раз.
Для ведения фронтальной отбойки угля необходимо, чтобы исполнительный орган обеспечивал непрерывную обработку всей поверхности забоя, включая концевые участки, в постоянном и оптимальном режиме одновременно и независимо от крепления и других операций в лаве. В этом случае устраняются дополнительные затраты времени на концевые операции, выдвижку концевых секций крепи и става конвейера, внедрение в пласт исполнительного органа комбайна, выемку ниш и другие операции, на которые в комплексно-механизированных лавах расходуется до 25-40% времени.
Важным является также то, что при таком способе разрушения угля в зоне работы исполнительного органа агрегата создается минимальное обнажение рабочего пространства, что позволяет успешно применять агрегаты в условиях слабых и неустойчивых пород кровли. Таким образом, применение исполнительного органа силового резания фронтального агрегата открывает новые возможности в самом процессе воздействия на угольный пласт. Разрушение таким исполнительным органом качественно отличается от разрушения пласта комбайнами или стругами. В результате намечаются пути роста всех технико-экономических показателей добычи угля.
5. Автоматизация периода дотягивания ШПУ с асинхронным приводом.
Для решения задачи обеспечения сниженной скорости дотягивания разработаны и внедрены различные системы электропривода и конструкции: асинхронный двигатель с регулируемым механическим тормозом; асинхронный двигатель с микроприводом; двухдвигательный асинхронный привод; асинхронный двигатель с питанием током низкой частоты; асинхронный двигатель с тиристорным коммутатором в цепи ротора.
Наибольшее распространение получил метод дотягивания по системе асинхронный двигатель – механический тормоз. Механическая характеристика 1 (рис а) системы асинхронный двигатель – механический тормоз получена сложением механической характеристики двигателя 2 и механической характеристики механического тормоза 3, управляемого регулятором давления.
Получение скорости дотягивания осуществляется совместной работой асинхронного двигателя на второй или третьей ступени роторного резистора и механического тормоза МТ. Это достигается с помощью электропневматического регулятора давления РДБВ (рис б), управление которым производится с помощью магнитного усилителя МУ. Привод МУ включен на обмотку управления соленоидом регулятора давления.
В схеме задействованы три обмотки управления МУ. Обмотка смещения ОУ1 создает начальный ток в обмотке ОУР и пропорциональный ему тормозной момент. Напряжение коммандоаппарата СКАЗС, соответствующее заданной скорости, сравнивается с напряжением снимаемым с тахогенератора BR и пропорциональным действительной скорости, и подается на обмотку управления ОУ2. Ток по обмотке управления пойдет только при условии, если действительная скорость станет выше заданной. Этот ток увеличивает напряжение на выходе МУ и ток в обмотке ОУР. Этому соответствует увеличение тормозного момента.
Обмотка управления ОУ3 с конденсатором С и резистором R осуществляет коррекцию по ускорению. Контакт контактора стопорения КСТ разрывает цепь этой обмотки при стопорении машины.
Использование в схеме магнитного усилителя для питания обмотки ОУР регулятора давления РДБВ позволяет увеличить мощность управления электромагнитом электропневматического регулятора давления, уменьшить мощность датчиков и применить различные контуры корректирующих цепей.
Отличаясь простотой и надежностью, этот способ получения малых скоростей ухудшает энергетику привода, так как режим работы двигателя характеризуется потерями в цепи ротора, пропорциональными скольжению. Кроме того, двигатель преодолевает дополнительно момент механического тормоза.
Скорость дотягивания можно получить по схеме двухдвигательного асинхронного привода. Для рудничной подъемной машины двухдвигательный привод – это привод, состоящий из двух асинхронных двигателей с фазным ротором, расположенных на одном валу. При вухдвигательном приводе получение скорости дотягивания достигается совместной их работой: одного – в двигательном режиме, другого – в режиме динамического торможения. Поддержание постоянства скорости дотягивания достигается автоматическим изменением тока статора двигателя, работающего в режиме динамического торможения с изменением момента нагрузки на валу подъемного двигателя. В периоды пуска, установившегося движения и замедления электродвигатели работают в двигательном режиме как и в обычной схеме.