Смекни!
smekni.com

Проект модернизации электропривода скребкового конвейера ОАО «Нойзидлер Сыктывкар» (стр. 2 из 9)

В ходе дипломного проектирования по вышеуказанной теме происходит знакомство с приоритетным в настоящее время современным электроприводом с частотным регулированием, система управления которого реализована на микропроцессорной базе. Входы и выходы таких приводов легко согласуются с входами и выходами современных автоматических систем управления технологическими процессами (АСУ ТП), в связи с чем эти приводы широко применяются для управления технологическим оборудованием. Частотно-регулируемый привод с микропроцессорной системой управления позволяет использовать простой по конструкции, высоконадёжный и экономичный асинхронный двигатель (АД) с короткозамкнутым ротором (КЗР) с характеристиками, не уступающим характеристикам двигателей постоянного тока (ДПТ).


3. СПЕЦИАЛЬНАЯ ЧАСТЬ.

3.1 Требования к электроприводу скребкового конвейера применительно к условиям данного цеха.

При проектирование электрооборудования и устройств автоматики следует учесть что, цех РОЦ является производством, где технологические процессы связаны с выделением древесно-содержащей пыли, потреблением воды, а также пара.

Требования предъявляемые к электроприводу и автоматике:

1. Режим работы – продолжительный (круглосуточный);

2. Исполнение и степень защиты:

-для оборудования, установленного в цехе или вне цеха (эл. дв. IP44,

IP54);

-для оборудования, установленного в эл. помещении (пр. IP54).

3. Охлаждение – предпочтительно с самообдувом.

4. В отношении управляемых приводов:

- обратная связь в системе регулирования отсутствует.

Распиловочно-окорочный цех является пожароопасным, а также из-за применения пара производством с повышенной влажностью, поэтому при конструировании электрооборудования для таких предприятий и при проектировании электроприводов механизмов необходимо учитывать неблагоприятные условия данного производства. Обычно пользуются следу -

ющими способами, обеспечивающими безопасное и надежное исполь зование электрооборудования на предприятиях с неблагоприятными условиями окружающей среды: вынесение электрооборудования в отдельные электротехнические помещения с благоприятными условиями. Это наиболее радикальное средство защиты электрооборудования, хотя в ряде случаев оно сопряжено с увеличением капитальных вложений на строительство специальных помещений. Следует иметь в виду, что при этом не могут быть вынесены электродвигатели, сигнальные устройства оперативного управления (кнопки, ключи, сигнальные лампы) и датчики. Применение электрооборудования в конструктивном исполнение, точно соответствующем условиям окружающей среды.

3.2. Расчет и выбор электродвигателя.

Основным требованием, предъявляемым рабочими механизмами к приводным двигателям, является обеспечение заданной производительности механизма при надлежащей надежности и экономичности их работы. Это требование может быть удовлетворено лишь при условии выбора двигателя соответствующей мощности.

В основном электродвигатели выбирают по следующим параметрам:

1. Величине напряжения.

2. Роду тока.

3. Частоте вращения вала двигателя.

4. Условиям окружающей среды.

5. Характеру и значению нагрузки.

В нашем случае выбор электродвигателя будем производить в зависи-

мости от характера нагрузки и мощности, а также от частоты вращения вала двигателя.

Выбор электродвигателя по частоте вращения.

Прямое соединение электродвигателя с машиной с помощью муфты возможно только при совпадении частот вращения вала двигателя и вала приводного механизма. Если частоты не совпадают, то подбирают двигатель с большей частотой вращения вала и применяют соответствующий тип редуктора. Тип передачи выбирают в зависимости от необходимого передаточного числа и конструктивных особенностей производственной установки.

При выборе электродвигателя по номинальной частоте вращения учитывают и технические показатели. Масса и стоимость быстроходных двигателей меньше, а номинальные КПД и коэффициент мощности Cos φ больше.

Технико-экономические расчёты и практический опыт показывают, что в большинстве случаев наиболее экономичны двигатели с частотой вращения 1500 мин -1. Двигатели на 3000 мин -1 применяют для приводов центробежных насосов и вентиляторов большого напора. Двигатели на 1000 мин -1 используют для привода поршневых компрессоров, вентиляторов среднего напора большой производительности и в других случаях, когда возможно соединение с валом рабочей машины.

Технические данные скребкового конвейера: потребляемая мощность на валу рабочего механизма: P = 10 кВт. Коэффициент загрузки механизма: Кз.м. = 0,9.

Выбор электродвигателя в зависимости от характера и мощности нагрузки.

Мощность двигателя для привода рабочей машины определяют по мощности, потребляемой на её валу (Рпотр.), и режиму работы.

При выборе электродвигателя по мощности возможно два случая:

1. Потребляемая мощность на валу рабочей машины известна (приводится в технической характеристике машины).

2. Потребляемая мощность на валу машины не известна.

Во втором случае для определения потребляемой мощности нужно использовать нагрузочные диаграммы, снятые каким-либо регистрирующим прибором, нормативы, учитывающие расход энергии и выход вырабатываемой продукции.

Если известна потребляемая мощность, то электродвигатели выбирают следующим образом.

1. Определим расчетную мощность электродвигателя для привода по формуле:

Ррасч = Рнагр*ηп

Где Рнагр - мощность, потребляемая на валу машины при номинальном режиме работы, кВт.

Рнагр = 10 кВт

ηп - КПД передачи.

ηп = 0,9-0,93, т.к. тип передачи через редуктор.

Ррасч = 10*0,95 = 9,5 кВт.

2. По расчетной мощности из каталога выбираем электродвигатель с паспортной мощностью Рном ≥ Ррасч: 4А132М2СУ3 со следующими техническими данными:

● Pн……………………………………………………………………..11кВт

● Iн……………………………………………………………………….22А

● Uн……………………………………………………………………..380В

● Частота вращения……………………....................................1500 об/мин

● Cosφ……………………………………………………………………..0,9

● К.П.Д…………………………………………………………………..0,88

● Iп/Iном = (Кi)…………………………………………………………...7,5

● Мmax/Mном……………………………………....................................2,2

3. Вычислим коэффициент каталожной нейвязки:

Кк.н. = Ррасч / Рном = 9,5 / 11 = 0,86

4. Расчитаем коэффициент загрузки электродвигателя:

Кз.д.= Кк.н. * Кз.м.

Где: Кз.м.- коэффициент загрузки механизма, для поточно-транспортных систем = 0,9.

Кз.д.= 0,86 * 0,9 = 0,77.

5. Определим мощность, присоединенную к сети Рприс. в кВт:

Рприс. = Рн / ηдв = 11 / 0,88 = 12,5 кВт

6. Определим потребляемую мощность электропривода с учетом

коэффициента загрузки:

Рпотр = Рприс * Кз.д. = 12,5 * 0,77 = 9,62 кВт.

3.3 Выбор частотного преобразователя.

Обоснование выбора.

Принципиальная возможность регулирования угловой скорости асинхронного двигателя изменением частоты питающего напряжения вытекает из формулы ω = 2πf (1-s)/p. При регулировании частоты также возникает необходимость регулирования амплитуды напряжения источника, что следует из выражения U ≈ Е = kФf. Если при неизменном напряжении изменять частоту, то поток будет изменяться обратно пропорционально частоте. Так, при уменьшении частоты поток возрастает, и это приведет к насыщению стали машины и как следствие к резкому увеличению тока и превышению температуры двигателя; при увеличении частоты поток будет уменьшаться и как следствие будет уменьшаться допустимый момент.

Для наилучшего использования асинхронного двигателя при регулирова-

нии угловой скорости изменением частоты необходимо регулировать напряжение одновременно в функции частоты и нагрузки, что реализуемо только в замкнутых системах электропривода. В разомкнутых системах напряжение регулируется лишь в функции частоты по некоторому закону, зависящему от вида нагрузки.

Из всех возможных способов регулирования этот способ позволяет плавно изменять угловую скорость в наиболее широком диапазоне (до 10 : 1, а иногда и более). Для его осуществления требуется, чтобы двигатель (или группа двигателей) получал питание от отдельного источника. В качестве такого источника могут быть использованы электромеханические или статические преобразователи частоты. В связи с развитием полупроводнико-

вой техники в настоящее время наиболее предпочтительными являются полупроводниковые статические преобразователи фирмы Vacon.

Обоснование выбора преобразователя.

Компактные преобразователи частоты Vacon серии CXL перекрывают диапазон мощностей 0,55 кВт – 1,5 МВт для трехфазных напряжений 200/400/500/690 В. Преобразователи частоты Vacon удовлетворяют самым жестким требованиям директив по электромагнитной совместимости, установленных ЕС.