Смекни!
smekni.com

Разработка системы телемеханики (стр. 2 из 4)

Передача сигналов ТИ.

Определяем количество разрядов необходимых для передачи сообщений ТИ с погрешностью 1%.

Так как код двоичный, то

2n=1/q=1/0,01=100

n=log2100=lg100/lg2=2/0,301=6,645

n принимаем равным 7, т.е. для передачи сообщений ТИ необходимо 7 ВП. Для передачи ТИ используется циклический код с обнаружением 2-х ошибок.

Для определения количества разрядов кода находим кодовое расстояние d:

d = r+1 = 2+1 = 3,

2 – число обнаруживаемых ошибок.

Отсюда необходимое число контрольных символов

{log2[(n+1)+E”log2(n+1)]}

Символ Е’’ означает округление до целого большего числа

{log2[(7+1)+E”log2(7+1)]}=E”2{log2[8+E”log28]}=7

Общее число ВП кода равно 14. Сообщения телесигнализации передаются на тех же ВП что и для передачи сигналов ТИ, для передачи будет использовано тоже кодирующее и декодирующее устройство. Таким образом передача сигналов ТУ требует наибольшего числа ВП и следовательно общее число ВП составляет 38, из них 15 отводится для передачи служебной информации и 23 – полезной информации.

5.Синтез структурной схемы.

Структурная схема ПУ приведена на рис 5.1.

Блок задания режимов работы (БРР) совместно с генератором тактовых импульсов (ГТИ) и распределителем тактовых импульсов (РИ) формирует все сигналы и синхронизирующие импульсы, преобразует коды и вырабатывает контрольные символы для кодовых комбинаций, передаваемых в КП, контролирует работоспособность аппаратуры. Команды, заданные на пульте диспетчера (ПД) через блок передачи сигналов ТУ (БПдТУ), БРР и линейный усилитель (ЛУ) выдаются в линию связи и далее поступают на КП. Сигналы телесигнализации поступающей от КП через линию связи и приемную часть

ЛУ поступают в блок приема телесигнализации (БПрТС) где обрабатываются, проверяются на отсутствие ошибок и далее передаются на ПД или щит сигнализации диспетчера. Сигналы телеинформации поступают в блок приема сигналов ТИ (БПрТИ) обрабатываются там код управлением сигналов с БРР и в зависимости от типов сигналов выдаются в цифро-аналоговый преобразователь (ЦАП) и далее на аналоговый указатель или в устройство отображения ТИ (УОТИ) и далее на цифровой индикатор.

Схема КП приведена на рис.5.2.

Информация поступающая из линии связи через ЛУ поступает в блок задания режимов работы (БРР) и генератор тактовых импульсов. ГТИ под управлением сигналов ПУ вырабатывает сигналы управления РИ. В БРР под действием сигналов РИ происходит обработка адресов и информации поступившей из линии связи. При совпадении поступившего адреса и адреса данного КП в зависимости от вида поступивших сигналов (ТУ, ТИ, ТС) в соответствующий блок приема. При поступлении сигналов ТУ информация поступает в блок приема сигналов ТУ (БПрТУ) и далее в объекты телеуправления включая или выключая их. При обращении в блок передачи сигналов ТС (БПдТС) происходит опрос состояния датчиков ТС и передача информации о их состоянии через БРР и ЛУ в линию связи и далее на ПУ. При обращении в блок приема сигналов ТИ (БПрТИ) код управления этого блока происходит опрос состояния датчиков ТИ, преобразование аналоговой информации из ТИ 1 с помощью АЦП в цифровую форму и передача данной информации через БРР и ЛУ в ПУ.

6. Синтез функциональной схемы системы.

Функциональная схема показывает взаимодействие устройств, блоков, узлов и элементов системы в процессе её работы.

Функциональная схема выполняется на уровне блоков, которыми являются распределители, регистры, дешифраторы, генераторы и т.д.

Рассмотрим отдельные узлы функциональной схемы.

На рис.6.1 приведена бесконтактная схема управления «светлым щитом». В общем случае «светлый щит» представляет собой щит со светящимися лампами сигнализации, воспроизводящий сообщение о состоянии каждого объекта световым сигналом лампы. Несоответствие указывается миганием лампы положения или включением специальной лампы.

В нашем случае «светлый щит» построен по схеме с двумя лампами, причем при отключенном объекте горит лампа управляемая цепью «сигнализация 1», а лампа управля-

емая цепью «сигнализация 2» погашена. При изменении состояния управляемого объекта горящая лампа гаснет, а вторая лампа начинает мигать до тех пор пока ключ квитирования (КК) не установится в положение соответствующее состоянию управляемого объекта. Верхнее положение КК соответствует включенному, а нижнее - выключенному состоянию объекта управления.

Рассмотрим работу схемы управления. Пусть ключ квитирования установлен в верхнее положение и из объекта управления приходит сигнал, что он находится в включенном состоянии. В этом случае триггер 1 и триггер 10 будут находиться в одинаковом единичном состоянии (при наличии разрешения прохождения сигнала квитирования уровнем логической 1). При этом на выходах элементов 15 и 16 уровень логического 0 и следовательно на выходе элемента 17 уровень логического 0, т.е. сигнал «несоответствие» отсутствует. С выхода элемента 18 логическая 1 поступает на входы элементов 6 и 8, а логическая 1 с прямого выхода триггера 1 на входы элементов 6 и 7. Таким образом на выходе элемента : появляется логическая 1,которая через элемент 11 поступает в усилитель 21, где усиливается и подается в цепь «сигнализация 2» зажигающая лампу свидетельствующую о включенном состоянии объекта управления.

Если состояние объекта управления изменилось «отключено» ,то приходит сигнал на вход R триггера 1 и он устанавливается в нулевое состояние. При этом на выходах элементов 15 и 16 образуются уровни логической 1. На выходе элемента 17 формируется сигнал «несоответствие» уровнем логической 1.

С выхода элемента 18,уровень логического 0 поступает на вход элемента 6,на его выходе формируется 0. Уровень логического 0 с прямого выхода триггера 1 формирует 0 на выходе элемента 7. Таким образом на выходе элемента 11 уровень 0 и цепь «сигнализация 2» устанавливается в 0,лампа в этой цепи гаснет. Вместе с тем логический 0 с выхода элемента 18 формирует 0 на выходе элемента 8,а логическая 1 с инверсного выхода триггера 1 разрешает прохождение низкочастотных импульсов с генератора НЧ,которые проходя через элемент 12 и усилитель 14 вызывают мигание лампы в цепи. При установке ключа квитирования в нижнее положение «отключено» триггер 10 устанавливается в нулевое положение, что приводит к появлению 0 на выходах элементов 15, 16, 17 и снятия сигнала «несоответствие».

Появление логической 1 на входе элемента 8 формирует на его выходе логическую 1, которая через элемент 12 и14 устанавливают цепь «сигнализация 1» в состояние логической 1,что соответствует зажиганию лампы стоящей в данной цепи.

Схема синхронизации распределителей импульсов.

В системе применена циклическая схема синхронизации распределителей.

На рис.6.2 представлена циклическая схема синхронизации распределителей. Питание распределителей на ПУ и КП осуществляется от генераторов (Г) частота генерации которых должна быть одинаковой. Т.к. практически невозможно сделать два генератора, которые генерировали бы строго одинаковую частоту, то следовательно через некоторое время после включения импульсы распределителей на ПУ и КП не будут совпадать. Во избежании этого в начале каждого цикла с одного из распределителей (ведущего) обычно замкнутого в кольцо и непрерывно (циклически) работающего посылается синхронизирующих сигнал (СС) на другой распределитель (ведомый). Ведомый распределитель запускается в начале цикла и останавливается в конце. В следующем цикле он вновь запускается СС и так каждый цикл. Синхронизация распределителей в каждом цикле делает надёжной их работу и является основным преимуществом циклической синхронизации. Однако в этом случае стабильность частоты генераторов должна быть такой, чтобы рассогласование их частот не привело к несовпадению импульсов в пределах одного цикла. Вероятность рассогласования возрастает с увеличением числа элементов распределителя. Во избежании рассогласования частот генераторов в цикле целесообразно использовать дополнительное синфазирование по импульсам.

На рис.6.3 представлена функциональная схема формирования импульсов, а на рис.6.4 временные диаграммы её работы, схема работает следующим образом. По сигналу Пуск триггера 2 и 5 устанавливаются в 1. Триггер 5 формирует передний фронт СИ, а триггер 2 разрешает прохождение тактовых импульсов с задающего генератора 1.через схему 3 на делитель частоты 4 с коэффициентом деления «К».

С появлением первого импульса от делителя триггер 5 устанавливается в нулевое состояние в результате чего формируется СИ. Тактовые импульсы ТИ предназначенные для управления работой распределителя импульсов поступают с частотой f/К на выход через схему 6. Цикл формирования СИ и ТИ завершается при поступлении сигнала «Сброс» на вход R триггера 2.

В приёмном устройстве блок синхронизации состоит из анализатора длительности импульсов и формирователя тактовых импульсов. Анализатор выделяет синхроимпульсы и запускает формирователь тактовых импульсов (ТИ) обеспечивающий синхронную работу приёмного и передающего распределителей.

Функциональная схема анализатора длительности импульсов (АДИ) и формирователя тактовых импульсов показана на рис.6.5, а временные диаграммы её работы на рис.6.6.