Смекни!
smekni.com

Расчет и построение тягово-динамической характеристики тягача с гидромеханической трансмиссией (стр. 2 из 3)

где: lн – коэффициент момента насосного колеса;

lт – коэффициент момента турбины;

r - плотность рабочей жидкости, кг/м3;

Da – активный диаметр гидропередачи, м.

Зависимость КПД hгт, коэффициента трансформации кгт и коэффициента момента насосного колеса lн от передаточного отношения iгт называется безразмерной характеристикой ГТ. Она может задаваться в табличном виде или графически. На характеристике ГТ выделяют наиболее характерные точки, называемые параметрами характеристик ГТ. Нагрузочные и преобразующие свойства ГТ оцениваются следующими основными параметрами: коэффициентом трансформации на режиме трогания кгт.0 , характеризующие максимальные преобразующие свойства ГТ; коэффициентом lн.м, определяющим энергоемкость ГТ; максимальным значением КПД hгт.мах.

Для обеспечения наилучших тяговых и скоростных качеств тягачей с гидродинамической передачей необходимо, чтобы двигатель и гидротрансформатор работали на согласованных режимах. Для двигателя это режим максимальной мощности, а для ГТ – режим максимального КПД. Согласование совместной работы двигателя и ГТ осуществляется либо применением согласующего редуктора, позволяющего использовать существующие ГТ, либо разработкой нового ГТ, геометрически подобного выбранному прототипу. В первом случае необходимо определить передаточное число согласующего редуктора; во втором – определить активный диаметр ГТ. Определение передаточного числа согласующего редуктора производится по формуле

icр=

где: lн – коэффициент момента насосного колеса при максималь-

ном значении КПД ГТ;

wеN и меN – угловая скорость и момент двигателя, соответс-

твующие режиму максимальной мощности;

В – коэффициент использования двигателя по мощности,

В=0,9

hср – КПД согласующего редуктора, hср=0,98

В результате расчетов может быть получено: iср>1, что свидетельствует об использовании понижающей передачи; iср<1, что свидетельствует об использовании ускоряющей передачи; iср=1, при этом согласующий редуктор не нужен.

При соединении двигателя с ГТ через согласующий редуктор параметры двигателя следует привести к валу насосного колеса, используя следующие зависимости:

Ме.п=В*Ме*iср*hср; nе.п=ne/iср; Nе.п=B*Ne*hcр

При создании нового ГТ его активный диаметр определяется по формуле:

Da=

=
=0,491 м

Возможные режимы совместной работы двигателя с ГТ могут быть выявлены, если на приведенную характеристику ГТ. Полученная при этом характеристика называется характеристикой входа. Предельно возможные режимы совместной работы определяются точкой пересечения нагрузочных кривых ГТ с кривой Ме (рис.1)

Нагрузочной характеристикой ГТ называется зависимость крутящего момента насосного колеса Мн от его угловой скорости wн. Построение нагрузочной характеристики производится с использованием формулы: Мн=lн*r*wн2*Da2 для конкретных значений Da и lн.

Таблица № 3. Результаты расчетов нагрузочной характеристики ГТ

WН iгт
0 0,2 0,4 0,6 0,8 1
11,68 334 325,9 319,9 313 305,4 299,2
16,16 640,04 626,1 614,7 601,4 586,8 574,94
20 980,3 959 941,7 921,4 899 880,7
23,3 1330,5 1301,6 1277 1250,3 1218 1193
26,6 1734 1696,4 1665,2 1629,3 1589 1556
30 2205 2157 2118,9 2073 2022 1981
33 2669,02 2563,9 2563,9 2508 2447 2397

Для построения тяговой характеристики тягача необходима характеристика выхода системы «двигатель – ГТ», показывающая изменение момента турбины Мт в функции его угловой

скорости wт (рис. 2).

Построение характеристики выхода производится с использованием характеристики входа и безразмерной характеристики ГТ в следующей последовательности. Для режима совместной работы двигателя и ГТ характеризуемого точками пересечения Мн и Ме.

Значения wто, Мто и Nто находим по формулам:

wто=wно*iгт; Мтоногт.0; Nтото*wто.

Выполняя вычисления в указанном порядке для всего интервала iгт получим зависимости Мт=f(wт), Nт=f(wт). Результаты расчетов сводим в таблицу № 4.

Таблица № 4. Результаты расчетов характеристики выхода ГТ

iгт 0 0,2 0,4 0,6 0,8 1
Мн 2210 2176 2152 2100 2054 2019
wн 30,06 30,11 30,18 30,25 30,37 30,46
Мт 5746 4852,48 3830,56 2940 2156,7 1413,3
wт 0 6,022 12,072 18,15 24,296 30,46
Nт 0 29221,6 49242,8 53361 52399,1 43039,9

Определение тягового фактора и передаточных чисел на всех передачах.

Для расширения диапазона регулирования крутящего момента с целью обеспечения высоких эксплуатационных качеств промышленных тягачей гидродинамические передачи дополняются механическими ступенчатыми коробками передач, образуя гидромеханическую передачу. При этом число передач переднего хода рекомендуется принимать от 3-х до 4-х, из которых к основным (рабочим) передачам относят первую или первую и вторую.

Для оценки и определения преобразующих свойств механической части используется понятие тягового фактора

U=iтр.м/rk, 1/м

Где iтр.м – передаточное число механической части трансмиссии;

rk– радиус ведущего колеса (звездочки), м.

Для гусеничных тягачей оптимальное значение тягового фактора на рабочих передачах переднего хода определяется из того, что максимальное тяговое усилие на крюке, ограниченное буксованием, должно достигаться при достаточно высоких значениях КПД ГТ.

Для 1-ой передачи:

UI = iтр*м/rк=jкр.мах*Gсц/((1-f)*MeN*Kгт*hтр)=

=500506,2/(1-0,05)*2282*1,05*0,90=244,30

где: jкр.мах – максимальное касательное значение тягового усилия

Gсц – нормальная нагрузка на гусеничный движитель, Н;

f – коэффициент сопротивления качению;

Кгт – коэффициент трансформации ГТ, при допустимом значе-

нии КПД ГТ равном 0,8.

Тяговый фактор на 2-ой передаче гусеничного тягача:

UII=UI/q=244,30/1,65=148,06

где: q – знаменатель геометрической прогрессии, q=1,65…1,75.

Тяговый фактор на высшей передаче:

Uв=0,377*0,8*nт.мах/Vт.мах=0,3*1827,6/10=54,828

где: nт.мах – максимальная частота вращения турбины ГТ, об/мин.

Для гусеничных тягачей с полужесткой подвеской рекомендуется принимать Vт.мах = 9…12 км/ч; c упругой 10…16 км/ч; для колесных тягачей 30…50 км/ч.

При наличии четырех передач тяговый фактор на III передаче не регламентируется, а определение UIIпроизводится при q = 1,65.

Тяговый фактор на I и II передачах можно определить по приближенным формулам:

UI = (0,65…0,75)*Gсц/(MeN*hтр);

UII = (0,4…0,45)*Gсц/(MeN*hтр);

Расчет и построение тягово – динамической характеристики.

Тяговой характеристикой называется график, зависимостей полезной мощности на крюке Nкр и действительной скорости движения тягача Vд на всех передачах, а так же коэффициента буксования d от силы тяги на крюке Ркр.

Для построения тяговой характеристики тягача в качестве исходного материала используется: выходная характеристика ГТ; зависимость коэффициента буксования d от силы тяги на крюке Ркр; значение тягового фактора U на всех передачах.

Для построения тяговой характеристики необходимо использовать следующие зависимости, по которым строятся графики.

Теоретическая скорость тягача, на:

I – передаче: Vт=p*nт/UI*30 = 3,14*1827,6/30*244,30=0,783 м/с

II – передаче: Vт=p*nт/UII*30 = 3,14*1827,6/30*148,08=1,29 м/с

III – передаче: Vт=p*nт/UIII*30 = 3,14*1827,6/30*54,828=3,48 м/с

Действительная скорость тягача:

Vд=Vт*(1-d), м/с.

Коэффициент буксования рекомендуется определить по эмпирическим зависимостям для гусеничных тягачей:

d=1-((1-(jкр/(jкр.мах-0,07)))0,15

где: jкр – удельная сила тяги, jкркр/Gсц.

Окружное усилие на движителе для всех передач, в зависимости от крутящего момента турбинного колеса Мт:

Рк1=Mт*UI*hм=5746*244,3*0,90=1263373

Рк2=Mт*UII*hм=5746*148,06*0,90=768470,04

Рк3=Mт*UIII*hм=5746*54,828*0,90=283537,5

где: hм – КПД механической части силовой передачи, hм=0,9

Сила тяги на крюке тягача:

Pкр1=Pк1 – Рf=1263373-25025,31=1238347,7 Н

Pкр2=Pк2 – Рf=768470-25025,31=743444,73 Н

Pкр3=Pк3 – Рf=283537,3-25025,31=258511,97 Н

где: Рf - сила сопротивления движению тягача

Рf=f*Gсц=0,05*500506,2=25025,31 Н

Полезная мощность на крюке:

Nкркр*Vд/1000

Таблица № 5. Результаты расчета исходных данных для построения тягово – динамической характеристики.

№ передачи U, 1/м Рк, Н Ркр, Н т, м/с

1

2

3

244,30

148,06

54,828

1263373

768470,04

283537,5

1238347,7

743444,73

258511,97

0,783

1,29

3,48

Построение тягово – динамической характеристики производится в следующей последовательности.