Смекни!
smekni.com

Расчет и проектирование коробки скоростей к операционному токарному станку (стр. 2 из 4)

NHE = 60·tч·nI = 60·6·103·675,5 ≈ 24·107 циклов

KHL =

=
1

т.к. NHE > NHO, то KHL = 1

dIH =

=
мм

mH =

мм

б) на изгибную выносливость

mF =

Km = 13,8 (сталь, прямозубая)

ТI = 75,7 H·м

Z3 = 24

Ψbd = 0,3

УF3 = Z3 и “Х” = 3,92 (по таблице)

σFp = σFp’·KFL

KFL =

1

K = 1,15 по таблице 1. 5

Для постоянного режима

NFE = NHE = 24·107

т.к. NFE>NF0, то KFL = 1

σFP = 230·1 = 230 МПа

mF = 13,8

2,7мм

mH = 2,55мм mF = 2,7мм

ГОСТ: 2,0; 2,25; 2,5; 2,75; 3,0; 3,5…

по ГОСТ выбираем 2,75мм

Проверочный расчет прямозубой передачи

а) на контактную выносливость

σН = ZM·ZH·Zε

σHP

ZM = 192 (сталь-сталь)

ZH = 2,49 (x=0, β=0)

Zε =

εα = = 1,88-3,2·(
) = 1,68

Zε =

= 0,88

dIII =

b = ψbd·dI = 0,3·66 = 19,8 мм (принимаем b=20)

U = 2

FtI =

K = 1 (прямозубая передача)

K = 1,07

KHv =

FHv = δH·д0·v·b

δH = 0,014 (для прямозубой НВ>350 и без модификации)

д0 = 47 (для 7й степени точности)

vI =

aw =

FHv = 0,014·47·2,33·19,8·

= 213,5 H

KHv = 1+

σH = 192·2,49·0,88·

МПа

730МПа < 900МПа

Расчет на изгибную выносливость

σF = УFI·Уε·Уβ·

σFP

УFI = 3,92

Уε = 1 (прямозубая)

Уβ = 1 (β=0)

FtI = 2336 H

b = 19,44 мм

m = 2,75 мм

K = 1(прямозубая)

K = 1,15

KFv = 1+

FFv = δF ·д0·vI·b·

δF = 0,016 (прямые без модификации НВ>350)

FFv = 0,016·47·2,33·20·

= 246 H

KFv = 1+

= 1,09

σF = 3,92·1·1·

= 205 МПа

205 МПа < 230 МПа

SF =

= 1,12

Расчёт клиноремённой передачи

Тип ремня Б

Нормального сечения по ГОСТ 1284.1 и по ГОСТ 1284.3


Характеристики и размеры (по таблице 9.13)

в0 = 17 мм

вр = 14 мм

h = 10,5 мм

А1 = 138 мм2

d1min = 125 мм

q = 0,18 кг/м

L = 800…6300 мм

Т1 = 50…150 Hм

Диаметры шкивов

мм – диаметры шкивов на выходе

округляем по табл. 9. 3 до значения 160 мм

dp1=dp2=160 мм

n2 = 482.499 мин-1

Скорость ремня

V = 4 м/с

Окружная сила

Ft =

= 1189 Н

Межосевое расстояние

мм

причём amin < a < amax , где

amin = 0,55·(d1+d2)+h = 0,55·(160+160)+10,5 = 186,5 мм

amax = 2·(d1+d2) = 2·(160+160) = 640 мм

Длина ремня

L ≈

L ≈ мм

Принимаем стандартную длину ремня по таблице 9.14

L = 1000 мм

Окончательное межосевое расстояние

, где

λ = L - π·dср = 497,6

dср =

= 160 мм

= 0

мм

Наименьшее межосевое расстояние

(необходимое для монтажа ремня)

aнаим ≈ a – 0,01·L ≈ 238,8 мм

Наибольшее межосевое расстояние

(необходимое для компенсации вытяжки ремня)

aнаиб ≈ a + 0,025·L ≈ 273,8 мм

Коэффициент режима
Ср = 1 т.к. токарный станок (по табл. 9.9)
Угол обхвата ремня на малом шкиве

Коэффициент угла обхвата

Са = 1 (по табл. 9.15)

Частота пробегов ремня, С -1
i =
i =
Эквивалентный диаметр ведущего шкива
de = d1·Kи , где

=1

=> de = 160 мм

приведённое полезное напряжение

F] = 2,5 МПа

Допускаемое полезное напряжение

F] = [σF]0·Ca·Cp = 2,5·1 = 2,5 МПа

Необходимое число клиновых ремней

Z’ =

Коэффициент неравномерности распределения нагрузки по ремням

Сz = 0,95 (по табл. 9.19)

Число ремней

принимаем Z = 3

Коэффициент режима при односменной работе

Cp’ = 1 (по табл. 9.9)

Рабочий коэффициент тяги

Ψ = 0, 67·Ca·Cp’ = 0,67·1·1 = 0,67

Коэффициент m =

Площадь сечения ремней

A = A1·Z

A = 138·3 = 414 мм

Натяжение от центробежных сил

Fц = 10-3·ρ·A·V2 , где

Плотность ремней ρ = 1,25 Г/см3

Fц = 10-3·1,25·414·42 = 8,28 Н

Натяжение ветвей при работе

F1 = Ft·

+Fц

F2 = Ft·

+Fц

F1 = 1189·

+8,28 = 1490,13 H

F2 = 1189·

+8,28 = 301,13 H

Натяжение ветвей в покое

F0 = 0,5·(F1+F2)-x·Fц , где

коэффициент x = 0,2

F0 = 0,5·(1490,13+301,13)-0,2·8,28 = 893,974 H

Силы действующие на валы при работе передачи

Fa = 1774,7 H

Силы действующие на валы в покое

Fa0 = 2·F0·sin