Примем Кор. =300 Вт/м²град. [ 2 ]
По уравнению (2 ) рассчитаем ориентировочную поверхность теплообмена:
716310,45
Fор. = ──────── = 41 м²
300 · 58
Рассчитав Fор. Подбираем по каталогам нормализированные варианты теплообменных аппаратов.
Для каждого из аппаратов рассчитываем критерий Рейнольдса [1]:
Re = ω· dэ · ρ / μ (7)
где ω – линейная скорость потока м/с ,
Dэ – диаметр эквивалентный м ,
ρ – плотность вещества кг/м³ ,
μ – вязкость вещества Па/с
Скорость рассчитываем по формуле:
ω = М / ρ·S (8)
где М – массовый расход теплоносителя кг/с ,
ρ – плотность вещества кг/м³ ,
S – площадь сечения одного хода по трубам м² ,
Таблица 2 Параметры кожухотрубчатых теплообменников и холодильников в соответствии с ГОСТ 15118-79, ГОСТ 15120-79 и ГОСТ 15122-79 [ 2 ]
№ № | Дк. мм | Дтруб, мм | Число ходов | Общее число труб, шт. | Поверхность теплообмена (м²) при длине труб,м (рассчитана по наружному диаметру труб) | Площадь самого узкого сечения потока в межтрубном пространстве м² | Площадь сечения одного хода по трубам, м² | ω | Re | |
2 | 4 | |||||||||
11 | 400 | 20х2 | 1 | 181 | 46 | 0,017 | 0,036 | 0,05 | 953,89 | |
22 | 400 | 20х2 | 2 | 166 | 42 | 0,017 | 0,017 | 0,106 | 2021,18 | |
33 | 600 | 20х2 | 4 | 334 | 42 | 0,041 | 0,016 | 0,113 | 2149,11 | |
44 | 600 | 20х2 | 6 | 316 | 40 | 0,037 | 0,009 | 0,2010 | 3819,38 | |
55 | 600 | 25х2 | 1 | 257 | 40 | 0,040 | 0,089 | 0,0203 | 506,28 |
Выбираем теплообменник №4, так как у него значение Рейнольдса наибольшее и равно 3819,38. Режим переходный 2300<Re<10000.
Метод и уравнение для расчёта коэффициентов теплоотдачи определяются, главным образом, характером теплообмена, условиями гидродинамического взаимодействия теплоносителя с поверхностью теплообмена и конструкцией теплообменного аппарата.
Теплоотдача при плёночной конденсации насыщенного пара на наружной поверхности пучка вертикальных труб рассчитывается по уравнению [1]:
_________________
αг = 3,78 · λ · ³√ ρ² ·N· dн / μ ·Gг (9)
где α - коэффициент теплоотдачи, Вт/м²К ,
λ – коэффициент теплопроводности теплоносителя
при определяющей температуре, Вт/мК ,
μ – вязкость теплоносителя при определяющей температуре Па*с,
ρ – плотность вещества, кг/м³ ,
λ, μ, ρ – для плёнки конденсата,
N – количество трубок в кожухотрубчатом теплообменнике,
dнар. – наружный диаметр трубок в теплообменнике, м,
Gг – расход горячего теплоносителя, кг/с,
λ см = λ2 ( х2 ) + λ1 ( 1-х2 ) – 0,72 ( λ2 - λ 1) · х2 ( 1 – х2 ) (10)
λ89бензол=0,1283 Вт/м ч град,
λ89толуол=0,1214 Вт/м ч град , [1]
λсм = 0,1283 · 0,78 + 0,1214 (1- 0,78) – 0,72 (0,1283 – 0,1214) · 0,78 (1 – 0,78) = 0,1259215 Вт/ мК
ρ89б = 797,4 кг/м³ ; ρ89т =792 кг/м³ [ 1 ]
1 хб хт
──── = ───── + ───── (11)
ρсм ρб ρ
1 0,78 0,22
──── = ──── + ─────
ρсм 797,4 792
ρсм = 796.812 кг/м³
lgμсм = х1 lgμ1 + x2 lgμ2 (12)
х1 , x2 –мольные доли компонента в смеси кмоль комп. / кмоль см ,
μ89бензола = 0,000294 Па с; μ89толуола = 0,0002998 Па с [ 1 ]
lgμсм = 0.92 · lg0.000294 + 0.08 · lg0.0002998 = 0.275 · 10-3 Па*с
6500
Gг = ──── = 1,8 кг/с
3600
По формуле ( 9 ) найдём коэффициент теплоотдачи:
_________________________________
αкондверт = 3,78 · 0,1259 · ³√ (796)² · 316 · 0,020 /0,2750 ·10-3 · 1,80
αкондверт = 954,54 Вт/м²
Для нахождения коэффициента теплоотдачи холодного теплоносителя воспользуемся формулой:
Nu· λ
αх = ─────── (13)
dэ
где Nu – критерий Нуссельта,
λ – коэффициент теплопроводности теплоносителя при определяющей температуре Вт/ мК ,
dэ - внутренний диаметр трубок в теплообменнике м,
Переходное течение жидкости в прямых трубах и каналах рассчитывается по формуле [1]:
Nu = 0.008 Re0.9 · Pr0.43 (14)
Cp·μ
Pr = ────── (15)
λ
Cp31вода = 4183,5 Дж/кг град , [1]
μ31вода =0,840·10-3 Па*с, [1]
λ31вода = 0.61813 Вт/ мК, [1]
4183,5·0,840·10-3
Pr = ───────────── = 5.6851
0.61813
Nu = 0.008 (3819.38)0.9 · (5.6851)0.43 = 28.27
По формуле (13) найдём коэффициент теплоотдачи :
28,27 · 0,633
αх = ───────── = 1118,43 Вт/м²К
0,0016
Коэффициент теплопередачи рассчитывается с помощью уравнения аддитивности термических сопротивлений с учётом наличия загрязнений по обе стороне теплопередающей стенки [1]:
1 1 δст 1
─── = ──── + ─── + rзг + rзх + ──── (16)
Кαг λстαх
δст = 0,002 м [2]
λст = 17.5 Вт/мК [1]
rзг = 1900 Вт/м²К [2]
rзх = 5800 Вт/м²К [2]
1 1 0,002 1 1 1
─── = ─── + ───── + ───+ ─── + ───── = 0,00275341 Вт/м²град
К 954,54 17,5 5800 1900 1118,43
Красч. = 363 Вт/м²град
По формуле (2) найдём расчётную поверхность:
716310,45
Fрасч. = ──────── = 34 м²
363 · 58
Далее проводим сопоставление выбранного варианта нормализированного теплообменника с расчётным по величине коэффициента запаса В:
Fст. – Fрасч.
В = ──────── · 100 % (17)
Fст
41 - 34
В = ──────· 100 % = 17 %
41
Допускается, как правило, превышение стандартной поверхности нормализованного теплообменника над расчётной не более чем 20 %.
1.2. РАСЧЁТ ТЕПЛОВОЙ ИЗОЛЯЦИИ
Целью расчёта тепловой изоляции является определение необходимой толщины слоя теплоизоляционного материала, покрывающего наружную поверхность теплообменника с целью снижения тепловых потерь и обеспечения требований безопасности и охраны труда при обслуживании теплоиспользующих установок. Температура поверхности слоя изоляции не должна превышать 45°С.
Расчёт толщины теплоизоляционного слоя материала проводят по упрощённой схеме, используя следующие уравнения [1]:
Qп = αн · F(tиз. – tокр. ) (17)
λиз.
Qиз =.──── · F( tст. – tиз. ) (18)
δиз.
Так как Qп = Qиз , то из этого следует :
λиз. ( tст. – tиз. )
δиз. = ───────── (19)
αн (tиз. – tокр. )
где α – коэффициент теплоотдачи в окружающую среду, Вт/м²К,
δиз. – толщина материала изоляции, мм,
λиз. – коэффициент теплопроводности материала изоляции, Вт/мК,
tст., tокр. , tиз. – соответственно температуры наружной стенки аппарата, окружающей среды, наружной поверхности теплоизоляционного материала °С,
Коэффициент теплоотдачи, который определяет суммарную скорость переноса теплоты конвекций и тепловым излучением для аппаратов, находящихся в закрытых помещениях, при температуре до 150°С можно рассчитать по приближённому уравнению:
αн = 9,74 + 0,07∆t (20)
Выбираем теплоизоляционный материал – стеклянная вата.
Задаём температуры:
Tст = 89°С
Tокр = 25°С
tиз. = 40°С
λиз. = 0,05 Вт/мК [1]
Рассчитываем значение коэффициента теплоотдачи :
∆t = tиз - tокр. = 40° - 25° = 15°С
αн = 9,74 + 0,07 * 15°С = 10,79
По уравнению (19) найдём толщину материала изоляции:
0,045 (89 – 40)
δиз. = ───────── = 13,3 мм
10,79 ( 40-25 )
1.3. ГИДРАВЛИЧЕСКИЙ РАСЧЁТ ТЕПЛООБМЕННЫХ АППАРАТОВ
Основной целью гидравлического расчёта теплообменных аппаратов является определение затрат энергии на перемещении жидкости через теплообменник и подбор насоса или вентилятора.
В общем случае мощность N [кВт],потребляемая двигателем насоса рассчитывается по уравнению [1]:
V· ∆Рп
N = ───────── (21)
1000 ŋн ŋ пер. ŋдв.
где V – объёмная производительность, м³/с,
∆Рп - потеря давления при течении теплоносителя, Па,
ŋн ,ŋпер., ŋдв. – соответственно коэффициенты полезного действия собственно насоса, передаточного механизма и двигателя
V = ω· S =0.2010 · 0.009 = 0.001809 м³/с
ω = 0,2010 (таблица 1,2)
S = 0,009 (таблица 1,2)
1.3.1. РАССЧИТЫВАЕМ ПОЛНОЕ ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ ПОТОКА ТЕПЛОНОСИТЕЛЯ
Уравнение для расчёта гидравлического сопротивления трубного пространства кожухотрубчатого теплообменника:
LZωтр.² ρρωтрю² ρωшт.²
∆Рп .тр. = λ ──── · ──── + [2.5(Z – 1) +2Z] · ──── + 3─────+ ρgh (22)
dэ 2 2 2
где λ – коэффициент трения
L– длина труб, м,
Z– число ходов
dэ – диаметр эквивалентный, м,
ωтр – скорость теплоносителя, м/с,
ρ – плотность вещества, кг/м³,
h – высота подъёма, м,
g = 9,8 м/с² - ускорение свободного падения
Коэффициент трения рассчитываем по формуле:
10 560
─── < Re < ──── зона смешенного трения (23)
е e
е = ∆/ dэ = 0,06/16 = 0,00375
∆ = 0,06 мм [2]
dэ = 16 мм (таблица 1,2)
2666,66 < 3819,382 < 149333,33
λ = 0,11( е + 68 / 3819,382 )0,25 = 0,04214
Рассчитываем по формуле
М
ωшт = ──── (24)
ρ S
d = 150 мм [2]
πd² 3.14*(0.15)²