S = ──── = ──────= 0.01766
4 4
ρ31вода = 997,6 кг/м³
5,7
ωшт = ─────────── = 0,01836 м/с
997,6 * 0,01766
По формуле (3,2) найдём:
2 · 4 (0,2010)² · 997,6
∆Рп .тр. = 0,04214 · ─── · ────────── + [2,5(4-1) + 2 · 4]
0,016 2
(0,2010)² · 997,6 997,6 · (0,01836)²
* -──────────+ 3 ───────────+ 997,6 · 9,8 · 2 ·3 = 59396,3424 Па
2 2
∆Р 59396.3424
Нп = ─── = ───────── = 6.06 [ м ст. жидкости]
ρg 997.6 * 9.81
По формуле (21) найдём:
ŋн. =0,40 [2]
ŋпер. = 1 [2]
ŋдв. = 1 [2]
0,001809 · 59396,3424
N = ────────────── = 0,268619 кВт
1000 · 0,40 · 1 · 1
Подбираем центробежный насос.
Расчётные | Стандартные | |
Q м³ /с | 1,8*10-3 | 2,4*10-3 |
Нп м ст. жидкости | 6,06 | 11,3 |
Nн кВт | 2,6 | 3 |
Марка Х8/18Электродвигатель тип А02-31-2 |
2. КОНСТРУКТИВНО-МЕХАНИЧЕСКИЙ РАСЧЁТ
В задачу конструктивно-механического расчёта входит определение необходимых геометрических размеров отдельных деталей и узлов , которые определяют конструкцию теплообменного аппарата, его механическую прочность и геометрические размеры.
2.1. РАСЧЁТ И ПОДБОР ШТУЦЕРОВ
Диаметр условного прохода (внутренний диаметр) штуцеров для подвода и отвода теплоносителей рассчитывается на основе уравнения массового расхода:
πd²вн.шт.
G = ρωшт. ───── (25)
4
откуда
___________
dвн.шт. = √ 4G / πρωшт.
.
ωшт. – скорость течения теплоносителя в штуцере м/с,
1. Для насыщенного пара.
Мсм. = Мб. · Хб. + Мт· (1 – Хт.) (27)
Мсм. = 78 · 0,92 + 93 · 0,08 = 79,2
Мсм. 273 Р
ρпара = ──── · ──── (28)
22,4 Т Р0
79,2 273 · 1,2
ρпара = ──── · ──────────── = 3,0723
22,4 (88 + 273) · 1,034
Предельно допустимая скорость насыщенного пара - (15-25 м/с) – 20 м/с
По уравнению (26) найдём:
__________________________
dвн.шт. = √ 4·6500/3,14 · 20·3,0723·3600 =93,4 мм
2. Для конденсата.
Предельно допустимая скорость конденсата – (0,1 – 0,5) – 0,1 м/с
По уравнению (4,2) найдём:
___________________________
dвн..шт. = √ 4·6500/3,14·3600 · 0,1 · 796,812 = 169 мм
3. Для холодного теплоносителя.
dвн..шт = 150 [мм]
Ду, мм | Дт, мм | До 0,6 МПа | |
Sт, мм | Нт, мм | ||
150 х 2 | 159 | 6 | 155;215 |
200 х 2 | 219 | 6 | 160;250 |
Рабочее давление 0,12МПа.
Конструкцию фланцевого соединения принимают в зависимости от рабочих параметров аппарата: плоские приварные фланцы при Р≤2.5МПа , t≤300°C. Во фланцевых соединениях при Р≤4.0МПа ,t≤300°C применяют болты.
Фланцы для труб и трубной арматуры стальные плоские приварные с соединительным выступом (ГОСТ 1255-67).
Ру МПа | Размеры, мм | Число отверстий Z | |||||||
<0.25 | Ду | Дф | Дб | Д1 | Д4 | h | h0 | d | |
150 | 260 | 225 | 202 | 161 | 13 | 3 | 18 | 8 | |
200 | 315 | 280 | 258 | 222 | 15 | 3 | 18 | 12 |
Диаметр резьбы болтов dб для всех фланцев при соответствующих d
d , мм 12 14 18 23
d , мм М10 М12 М16 М20
Фланцы для аппаратов стальные плоские приварные ОСТ-26-426-79.
Д,мм | Ру МПа | Дф | Дб | Д1 | h | S | d | Число отверстий Z |
600 | 0,3/0,6 | 720 | 680 | 644 | 25/30 | 8 | 23 | 20 |
2.2. ОБЕЧАЙКА ТЕПЛООБМЕННОГО АППАРАТА
Обечайка – это цилиндрический корпус аппарата, который работает, как правило, под избыточным внутренним или внешним давлением. Толщина стенки обечаек, работающих под внутренним давлением рассчитывается по уравнению:
PR· D
SR = ───────── (29)
2[σ] φp. · φR
где PR – расчетное давление в аппарате, МПа,
D – диаметр обечайки, мм,
[σ] – предельно-допускаемое напряжение, МПа,
φp. – коэффициент прочности шва
S≥ SR + C , где С – прибавка. (30)
PR ≤ (1.25- 1.5)P[σ]20/ [σ]t (31)
PR ≤ 1.4 · 0.12 · 140/133,4
PR ≤ 0.176
По формуле (30) найдём:
0.176 · 600
SR = ────────────── = 0.47761
2 · 134 · (1-0.175)
C = 2
S ≥ SR + C = 0.4776 + 2
S ≥ 2.4776 ≈ 3мм
2.3. ТОЛЩИНА ТРУБНЫХ РЕШЁТОК
В среднем толщина трубных решёток составляет от 15 до 35мм в зависимости от диаметра развальцованных теплообменных труб и конструкции теплообменника, поскольку напряжение, под действием которых находится напряжение, под действием которых находится и работает трубная решётка, определяется не только давлением рабочей среды, но и особенностями конструкции аппарата.
Ориентировочно, толщину трубных решёток можно принять равной:
Sтр.реш. = (dн/ 8) + 5мм. = (20/8) + 5 = 7,5 мм.
2.4. ПОДБОР ДНИЩА
Днище – это составной элемент корпуса химических аппаратов, который ограничивает корпус снизу и сверху и изготавливается из того же материала, что и корпус. По форме днища могут быть, в зависимости от давления среды и конструктивных соображений, эллиптическими, сферическими, коническими, плоскими, цилиндрическими; могут присоединяться к корпусу пайкой, сваркой или с помощью фланцев.
Днища эллиптические отбортованные стальные с внутренними базовыми размерами.
Дв, мм | S, мм | Н, мм | h, мм | Fв, м² | Vв, м³ |
600 | 4-1618-40 | 150 | 2540 | 0,440,47 | 0,03520,0395 |
На фундаменты или специальные несущие конструкции химические аппараты устанавливаются с помощью опор. В зависимости от рабочего положения аппарата различают опоры для горизонтальных и вертикальных аппаратов.
Вертикальные аппараты обычно устанавливают или на стойках, когда их размещают внизу в помещении, или на подвесных лапах, когда аппарат размещают между перекрытиями в помещении.
Горизонтальные аппараты устанавливают на Седловых опорах.
В зависимости от толщины стенки корпуса аппарата лапы привариваются или непосредственно к корпусу, или к накладному листу.