Для регулируемых двухдвигательных приводов вентиляторов ВЦД-47У и ВЦД-47 ''Север'' целесообразно иметь глубину регулирования частоты вращения порядка 1 : 5 – 1 : 4. Для осуществления ступенчатого резисторного пуска асинхронных двигателей, применяемых в приводе вентиляторов ВЦД-47 ''Север'', отсутствуют серийно выпускаемые надежные средства. Поэтому принятые регулируемые приводы этих вентиляторов обеспечивают регулирование частоты вращения из остановленного состояния. Это позволяет осуществить надежный бесступенчатый пуск вентиляторов и настройку вентиляторов на необходимый, наиболее экономичный режим работы.
Электропривод вентилятора по системе АВК работает следующим образом. Вначале масляным выключателем высоковольтной ячейки ВЯ4 подается напряжение на согласующие трансформаторы Т1, Т2, а с их вторичных обмоток на инверторы U1, U2 (цепи управления инверторов должны быть подготовлены). На стороне постоянного тока инверторы создадут максимальную противо-ЭДС (автоматический выключатель Q2 разомкнут). Затем масляным выключателем ячейки ВЯЗ последовательно соединенные обмотки статоров асинхронных двигателей М1М и М2М включаются в общую звезду. После этого масляным выключателем ячейки ВЯ1 подается напряжение 6000 В на статорные обмотки двигателей. В результате такого включения напряжение на статорных обмотках каждого двигателя составит U1ф=1732 В, а на кольцах роторов напряжение равно U2Л =525 В в приводе вентилятора ВЦД-47У и U2Л = 680 В в приводе вентилятора ВЦД-47 ''Север''. Как видно, напряжение уменьшается по сравнению с номинальным вдвое и будет ниже номинального напряжения переменного тока 700 В на входе выпрямителей VI, V2. В дальнейшем при включении автоматического выключателя Q2 замыкается цепь контура постоянного тока, выпрямители VI, V2 подключаются параллельно (автоматический выключатель Q1 разомкнут) к последовательно соединенным инверторам U1, U2. Так как суммарная противо-ЭДС постоянного тока, создаваемая двумя инверторами, соответствует подведенному суммарному напряжению переменного тока 380Х2=760 В и превышает выпрямленную ЭДС ротора, соответствующую напряжению роторов 525 В (680 В), ток в контуре постоянного тока проходить не будет. Ток в роторных обмотках также отсутствует. Поэтому двигатели М1М и М2М не вращаются.
В процессе уменьшения противо-ЭДС с момента ее равенства выпрямленной ЭДС роторов начинает плавно возрастать ток в роторах двигателей и контуре постоянного тока. С появлением тока в роторах на валах двигателей возникает вращающий момент. Когда вращающий момент превысит момент сопротивления, двигатели начнут вращаться с плавным повышением частоты вращения. При прекращении изменения угла регулирования тиристоров инвертора устанавливается необходимое значение частоты вращения. При установившейся частоте вращения выпрямленная ЭДС роторов превышает противо-ЭДС инверторов на такое значение, при котором протекает ток в роторах, необходимый для создания на валах двигателей момента, равного моменту сопротивления. В случае необходимости снижения частоты вращения соответствующим изменением угла регулирования тиристоров повышается противо-ЭДC инверторов. Это вызывает уменьшение тока в роторах двигателей, снижение моментов двигателей и соответственно снижение частоты вращения двигателей.
Таким образом, изменение частоты вращения двигателей происходит за счет изменения противо-ЭДС инверторов: снижение ее значения повышает частоту вращения, а повышение – снижает. При максимальном значении противо-ЭДС угол регулирования тиристоров инвертора – максимальный, при минимальном – минимальный. Изменение угла регулирования осуществляется с помощью системы импульсно-фазового управления (СИФУ). В СИФУ подается сигнал выходного напряжения сельсинного задатчика скорости.
В режиме включения статорных обмоток двигателей в общую звезду электропривод обеспечивает получение установившихся частот вращения в зоне I (рис. 2.2).
При необходимости получения частот вращения выше диапазона зоны I на верхнем значении частоты вращения зоны статорные обмотки переключаются с общей звезды в общий треугольник: масляный выключатель ячейки ВЯЗ (см. рис. 2.1) отключается, а масляный выключатель ячейки ВЯ2 включается. При этом напряжение на кольцах роторов двигателей возрастает в
раза и обеспечивается регулирование частот вращения в зоне II.В случае необходимости дальнейшего повышения частоты вращения при достижении приводом верхнего предела частоты вращения зоны II включается автоматический выключатель Q1 и выпрямители VI и V2 подключаются последовательно к инверторам U1 и U2. Ток по диодам V3 и V4 не протекает, так как они включены непроводящей полярностью по отношению к ЭДС выпрямителей. В таком соединении привод работает в зоне III частот вращения, обеспечивая разгон двигателя до номинальной частоты вращения или работу на любой из частот вращения в пределах зоны III. С достижением электроприводом максимальной, близкой к номинальному значению, частоты вращения замыкаются контакты контакторов К1, К2. Двигатели переводятся на естественную характеристику.
При необходимости перевода привода вентилятора с естественной характеристики в зону III, затем в зону II и далее в зону I вначале размыкаются контакты Kl, К2. После снижения частоты вращения до нижней границы зоны III отключается автоматический выключатель Q1. В дальнейшем при снижении частоты вращения до нижней границы зоны II производится переключение обмоток статоров с общего треугольника в общую звезду, т. е. переключения производятся в обратном порядке. Переключения обмоток статора с общей звезды в общий треугольник и наоборот, а также включение и отключение выключателя Q1 производится автоматически в функции частоты вращения.
Дроссели LI, L2 ограничивают пики выпрямленного тока в процессе включения и отключения автоматического выключателя Q1, а также сглаживают пульсации выпрямленного напряжения при работе в зонах I и II. Дроссели L3 и L.4 предназначены только для сглаживания пульсации выпрямленного напряжения. Инверторы U1, U2 во всех зонах работы электропривода рекуперируют через согласующие трансформаторы Т1, Т2 энергию скольжения в сеть.
Рис. 2.2. Зоны работы электропривода вентилятора ВЦД-470 ''Север''
Наличие в системе регулятора скорости обеспечивает поддержание установленной скорости в необходимых пределах с помощью обратной связи по частоте вращения (напряжению тахогенератора BR). Регулятор тока обеспечивает ограничение максимального значения выпрямленного тока при переходных процессах включения и регулирования частоты вращения.
7. Автоматизация производственных процессов
Проектные решения в области автоматизации и управления технологическими процессами базируются на предписаниях норм технологического проектирования угольных шахт, разрезов и обогатительных фабрик, и направлены на облегчение условий труда и повышения безопасности производства работ. А также высвобождение рабочих, где это представляется технически возможным и экономически целесообразным, повышение производительности труда и снижение себестоимости угля, экономию энергетических и материальных ресурсов.
Реализация указанных мероприятий достигается следующим путем:
комплексной автоматизацией стационарных установок, групп технологического оборудования и процессов в шахте и на поверхности;
высокого уровня и глубины автоматизации технологических процессов;
- использования в проекте аппаратуры автоматизации, базирующейся на комплектных устройствах блочного типа, разработанной на совершенной элементарной базе с учетом последних достижений отечественной науки и техники в этой области, имеющих высокие показатели надежности и ремонтопригодности, и оснащенные в ряде случаев средствами технической диагностики;
- организации оптимальной структуры оперативного управления основным производством.
Таблица 7.1
Автоматизированный процесс | Используемая аппаратура |
Автоматизация конвейерных линий | АУК –1М |
Контроль за содержанием СН4 | «Метан» |
Автоматизация бункеров | РКУ |
Главный водоотлив | ВАВ-1М, КАВ |
Вентиляционные установки | УКАВ-2 |
Автоматизация очистных работ | САУК |
Аппаратура громкоговорящей связи | ГИС-1 |
Автоматизация управления стрелочным переводом | АБСС-1 |
Аппаратура управления, сигнализации и связи | УМК + АС-3СМ |
ВМП | АПТВ |
Шахтные котельные | АПК-1 |
Калориферные установки | АКУ-3 |
В своей работе хочу подробно остановиться на системе автоматизированного управления вентиляторами главного проветривания, т.к. их доля в общем потреблении шахтой электроэнергии около 40%. Система автоматического управления ВГП позволяет оптимизировать процесс вентиляции шахты и снизить потребление электроэнергии на шахте, что приведет к снижению себестоимости угля.