Смекни!
smekni.com

Техническое зрение роботов (стр. 4 из 8)

Предыдущий пример, не­смотря на его простоту, иллюстрирует некоторые важные проблемы расширения области. Двумя очевидными проблема­ми являются: выбор начальных узлов для правильного представления областей, представляющих интерес, и опреде­ление подходящих свойств для включения точек в различные области в процессе расшире­ния. Выбор множества, состоя­щего из одной или нескольких начальных точек, следует из по­становки задачи. Например, в военных приложениях объек­ты, представляющие интерес, имеют более высокую темпера­туру, чем фон, и поэтому про­являются более ярко. Выбор наиболее ярких пикселов явля­ется естественным начальным шагом в алгоритме процесса расширения области. При от­сутствии априорной информа­ции можно начать с вычисле­ния для каждого пиксела на­бора свойств, который навер­няка будет использован при установлении соответствия пик­села той или иной области в процессе расширения. Если ре­зультатом вычислений являют­ся группы точек (кластеры), тогда в качестве узловых бе­рутся те пикселы, свойства ко­торых близки к свойствам центроидов этих групп. Так, в примере, приведенном выше, гистограмма интенсивностей показала бы, что точки с интен­сивностью от одного до семи являются доминирующими.Выбор критерия подобия зависит не только от задачи, но также от вида имеющихся данных об образе. Например, анализинформации, полученной со спутников, существенно зависит от использования цвета. Задача анализа значительно усложнится при использовании только монохроматических образов. К сожа­лению, в промышленном техническом зрении возможность полу­чения мультиспектральных и других дополнительных данных об образе является скорее исключением, чем правилом. Обычно анализ области должен осуществляться с помощью набора дес­крипторов, включающих интенсивность и пространственные ха­рактеристики (моменты, текстуру) одного источника изображе­ния. Отметим, что применение только одних дескрипторов может приводить к неправильным результатам, если не используется информация об условиях связи в процессе расширения области. Это легко продемонстрировать при рассмотрении случайного рас­положения пикселов с тремя различными значениями интенсив­ности. Объединение пикселов в «область» на основе признака одинаковой интенсивности без учета условий связи приведет к бессмысленному результату при сегментаци.

Другой важной проблемой при расширении области является формулировка условия окончания процесса. Обычно процесс расширения области заканчивается, если больше не существует пикселов, удовлетворяющих критерию принадлежности к той или иной области. Выше упоминались такие критерии, как интен­сивность, текстура и цвет, которые являются локальными по своей природе и не учитывают «историю» процесса расширения области. Дополнительный критерий, повышающий мощность алгоритма расширения области, включает понятие размера, схо­жести между пикселом-кандидатом и только что созданными пикселами (сравнение интенсивности кандидата и средней ин­тенсивности области), а также формы области, подлежащей расширению. Использование этих типов дескрипторов основано на предположении, что имеется неполная информация об ожи­даемых результатах.

2.3.2.Разбиение и объединение области.

Изложенная выше про­цедура расширения области начинает работу с заданного мно­жества узловых точек. Однако можно сначала разбить образ на ряд произвольных непересекающихся областей и затем объ­единять и/или разбивать эти области с целью удовлетворения условий. Итеративные алгоритмы разбиения и объединения, работа которых направле­на на выполнение этих ограничений, могут быть изложены сле­дующим образом.

ПустьR является полной областью образа, на которой опре­делен предикат Р. Один из способов сегментации R состоит в успешном разбиении площади образа на все меньшие квадрат­ные области, так что для каждой областиRi, P(Ri)=ИСТИНА. Процедура начинает работу с рассмотрения всей области R. Если Р(R)= ЛОЖЬ, область разбивается на квадранты. Если для какого-либо квадранта Р принимает значение ЛОЖЬ, этот квадрант разбивается на подквадранты и т. д. Этот метод разбиения обычно представляется в виде так называемого квадродерева (дерева, у которого каждая вершина имеет только че­тыре потомка). Отметим, что корень дерева соответствует всему образу,а каждая вершина - разбиению. В данном случае только R4подлежит дальнейшему разбиению. Если применять только опе­рацию разбиения, можно ожидать, что в результате окончатель­ного разбиения всей площади образа на подобласти последние будут иметь одинаковые свойства. Это можно устранить допу­стимым объединением так же, как и разбиением. Для того чтобы удовлетворить условиям сегментации, введенным выше, необ­ходимо объединять только те соседние области, пикселы которых удовлетворяют предикату Р, таким образом, две соседние обла­стиRi иRk объединяются только в том случае, если P(RiURk) = ИСТИНА.

Изложенное выше можно представить в виде процедуры, где на каждом шаге выполняются следующие операции:

1. Разбиение областиRi, для которой Р{Ri)= ЛОЖЬ, на четыре непересекающихся квадранта.

2. Объединение соседних областейRi и Rk, для которых Р (Ri U Rk) = ИСТИНА.

3. Выход на останов, когда дальнейшее объединение илиразбиение невозможно.

Возможны варианты этого алгоритма. Например, можно сначала разбить образ на квадратные блоки. Дальнейшее разбиение выполняется по изложенному выше способу, но вначале объединение ограничивается группами из четырех бло­ков, являющихся в квадродереве потомками и удовлетворяю­щих предикату Р. Когда дальнейшее объединение этого типа становится невозможным, процедура завершается окончательным объединением областей согласно шагу 2. В этом случае объединяемые области могут иметь различный размер. Основ­ным преимуществом этого подхода является использование од­ного квадродерева для разбиения и объединения до шага, на котором происходит окончательное объединение.

2.4. Применение движения

Движение представляет собой мощное средство, которое ис­пользуется человеком и животными для выделения интересую­щих их объектов из фона. В системах технического зрения ро­ботов движение используется при выполнении различных операций на конвейере, при перемещении руки, оснащенной дат­чиком, более редко при перемещении всей робототехнической системы.

2.4.1.Основной подход.

Один из наиболее простых подходов для определения изменений между двумя кадрами изображения (образами)f(x, у, ti) иf(x, у,t,), взятыми соответственно в моменты времени ti и tj, основывается на сравнении соответ­ствующих пикселов этих двух образов. Для этого применяется процедура, заключающаяся в формировании так называемой разности образов.

Предположим, что мы имеем эталонный образ, имеющий только стационарные компоненты. Если сравним этот образ с таким же образом, имеющим движущиеся объекты, то разность двух образов получается в результате вычеркивания стацио­нарных компонент (т. е. оставляются только ненулевые записи, которые соответствуют нестационарным компонентам изобра­жения).

Разность между двумя кадрами изображения, взятыми в мо­менты времени ti иtj, можно определить следующим образом:

dij(x,y) =

(*)

где q—значение порогового уровня. Отметим, чтоdij(x, у) при­нимает значение 1 для пространственных координат (х, у) только в том случае, если два образа в точке с этими координа­тами существенно различаются по интенсивности, что опреде­ляется значением порогового уровня q.

При анализе движущегося образа все пикселы изображений разностиdij(x, у), имеющие значение 1, рассматриваются как результат движения объекта. Этот подход приметим только в том случае, если два образа зарегистрированы и освещен­ность имеет относительно постоянную величину в пределах границ, устанавливаемых пороговым уровнем q. На практике записи вdij(x, у), имеющие значение 1, часто появляются в ре­зультате действия шума. Обычно на разности двух кадров изо­бражения такие значения выглядят как изолированные точки. Для их устранения применяется простой подход, заключающийся в формировании 4- или 8-связных областей из единиц в dij(x, у), и затем пренебрегают любой областью с числом записей, мень­шим заранее заданного. При этом можно не распознать малые и/или медленно движущиеся объекты, но это увеличивает ве­роятность того, что остающиеся записи в разности двух кадров изображения действительно соответствуют движению.