2.4.2.Аккумулятивная разность.
Как говорилось выше, разность кадров благодаря шуму часто содержит изолированные записи. Несмотря на то что число таких записей может быть сокращено или полностью ликвидировано в результате анализа связности пороговых уровней, этот процесс может также привести к потере изображений малых или медленно движущихся объектов. Ниже излагается подход для решения этой проблемы путем рассмотрения изменения в расположении пикселов на нескольких кадрах, т. е. в процесс вводится «память». Основная идея заключается в пренебрежении теми изменениями, которые возникают случайно в последовательности кадров и, таким образом, могут быть отнесены к случайному шуму.
Рассмотрим последовательность кадров изображения f(x,y,t1), f(x, у, t2), ..., f(x, у,tn) и допустим, чтоf(x, у, t1) является эталонным образом. Изображение аккумулятивной разности формируется в результате сравнения эталонного образа с каждым образом в данной последовательности. В процедуре построения изображения аккумулятивной разности имеется счетчик, предназначенный для учета расположения пикселов. Его значение увеличивается каждый раз, когда возникает различие в расположении соответствующих пикселов эталонного образа и образа из рассматриваемой последовательности. Таким образом, когдаk-й кадр сравнивается с эталонным, запись в данном пикселе аккумулятивней разности означает, во сколько раз интенсивность пиксела k-го кадра отличается от интенсивности пиксела эталонного образа. Различия устанавливаются, например, с помощью уравнения (*).
Приведенные выше рассуждения иллюстрируются рисунке. На рисунке а—д приведены образы прямоугольного объекта (обозначенного нулями), движущегося вправо с постоянной скоростью 1 пиксел/кадр. Эти образы приведены в моменты времени, соответствующие одному перемещению пиксела. На рис. (а) изображен кадр эталонного образа, на рис. (г) со 2-го по 4-й кадры последовательности, а на рис. (д)— 11-й кадр. Рис. (е— и) соответствуют изображениям аккумулятивной разности, которые можно объяснить следующим образом. На рис. (е) левая колонка из 1 обусловлена различием между объектом на рис. (а), и фоном на рис. (б). Правая колонка из 1 вызвана различием между фоном эталонного образа и передним контуром движущегося объекта. Ко времени появления4-го кадра (рис. г), первый ненулевой столбец изображения аккумулятивной разности указывает на три отсчета, что соответствует трем основным различиям между этим столбцом в эталонном образе и соответствующим столбцом в последующихкадрах. На рис. и показано общее число из 10 (представленных «A» в шестнадцатеричной системе счисления) изменений этого положения. Остальные записи на этом рисунке объясняются аналогично.
Нередко полезно рассматривать три типа изображений аккумулятивной разности: абсолютное, положительное и отрицательное. Последние два получаются из уравнения (*), вкотором нет модуля, а вместоf(x, у, ti) подставляется значение эталонного кадра. Предполагая, что числовые значения интенсивности объекта превышают значения фона в случае, когда разность положительна, она сравнивается с положительным значением порогового уровня; если отрицательна, сравнение выполняется с отрицательным значением порогового уровня. Это определение заменяется на противоположное, если интенсивность объекта меньше фона.
Рис. Кадр эталонного образа (а), б—д соответственно 2-, 3-, 4- и 11-й кадры, е—и—изображения аккумулятивной разности для 2-, 3-, 4- и 11-го кадров .
9 | ||||||
10 | 00000000 | |||||
11 | 00000000 | |||||
12 | 00000000 | |||||
a | 13 | 00000000 | ||||
14 | 00000000 | |||||
15 | 00000000 | |||||
16 | ||||||
9 | 9 | |||||
10 | 00000000 | 10 | 1 | 1 | ||
11 | 00000000 | 11 | 1 | 1 | ||
12 | 00000000 | 12 | 1 | 1 | е | |
б | 13 | 00000000 | 13 | 1 | 1 | |
14 | 00000000 | 14 | 1 | 1 | ||
15 | 00000000 | 15 | 1 | 1 | ||
16 | 16 | |||||
9 | 9 | |||||
10 | 00000000 | 10 | 21 | 21 | ||
11 | 0000000C | 11 | 21 | 21 | ||
в | 12 | 0000000C | 12 | 21 | 21 | ж |
13 | 0000000C | 13 | 21 | 21 | ||
14 | 00000000 | 14 | 21 | 21 | ||
15 | 00000000 | 15 | 21 | 21 | ||
16 | 16 | |||||
9 | 9 | |||||
10 | 00000000 | 10 | 321 | 321 | ||
11 | 00000000 | 11 | 321 | 321 | ||
г | 12 | 00000000 | 12 | 321 | 321 | з |
13 | 00000000 | 13 | 321 | 321 | ||
14 | 00000000 | 14 | 321 | 321 | ||
15 | 00000000 | 15 | 321 | 321 | ||
16 | 16 | |||||
9 | 9 | |||||
10 | 00000000 | 10 | A9876 | 5438887654321 | ||
11 | 00000000 | 11 | A9876 | 5438887654321 | ||
12 | 00000000 | 12 | A9876 | 5438887654321 | ||
д | 13 | 00000000 | 13 | A9876 | 5438887654321 | и |
14 | 00000000 | 14 | A9876 | 5438887654321 | ||
15 | 00000000 | 15 | A9876 | 543888.7654321 | ||
16 | 16 |
2.4.3.Определение эталонного образа.
Успех применения методов зависит от эталонного образа, относительно которого проводятся дальнейшие сравнения. Как уже говорилось выше, различие между двумя образами в задаче распознавания движущихся объектов определяется путем исключения стационарных компонент при сохранении элементов, соответствующих шуму и движущимся объектам. Проблема выделения образа из шума решается методом фильтрации или с помощью формирования изображения аккумулятивной разности.
На практике не всегда можно получить эталонный образ, имеющий только стационарные элементы, и это приводит к необходимости построения эталона из набора образов, содержащих один или более движущихся объектов. Это особенно характерно для ситуаций, описывающих сцены со многими быстроменяющимися объектами или в случаях, когда возникают частые изменения сцен. Рассмотрим следующую процедуру генерации эталонного образа. Предположим, что мы рассматриваем первый образ последовательности в качестве эталонного. Когда нестационарная компонента полностью вышла из своего положения в эталонном кадре, соответствующий фон в данном кадре может быть перенесен в положение, первоначально занимаемое объектом в эталонном кадре. Когда все движущиеся объекты полностью покинули свои первоначальные положения, в результате этой операции воссоздается эталонный образ, содержащий только стационарные компоненты. Перемещение объекта можно определить с помощью операции расширения положительного изображения аккумулятивной разности.
В системах технического зрения проблемой описания называется выделение свойств (деталей) объекта с целью распознавания. В идеальном случае дескрипторы не должны зависеть от размеров, расположения и ориентации объекта, но должны содержать достаточное количество информации для надежной идентификации объектов. Описание является основным результатом при конструировании систем технического зрения в том смысле, что дескрипторы должны влиять не только на сложность алгоритмов распознавания, но также и на их работу. рассмотрим три основные категории дескрипторов: дескрипторы границы, дескрипторы области и дескрипторы для описания трехмерных структур.
Цепные коды применяются для представления границы в виде последовательности отрезков прямых линий определенной длины и направления. Обычно в основе этого представления лежит 4- или 8-связная прямоугольная решетка. Длина каждого отрезка определяется разрешением решетки, а направления задаются выбранным кодом. Отметимчто для представления всех направлений в 4-направленном цепном коде достаточно 2 бит, а для 8-направленного цепного кода требуется 3 бит. Для порождения цепного кода заданной границы сначала выбирается решетка. Тогда, если площадь ячейки, расположенной внутри границы, больше определенного числа (обычно 50%), ей присваивается значение 1; в противном случае этой ячейке присваивается значение 0. Окончательно мы кодируем границу между двумя областями, используя направления.Результат кодирования в направлении по часовой стрелке с началом в месте, помеченном точкой. Альтернативная процедура состоит в разбиении границы на участки равной длины (каждый участок имеет одно и то же число пикселов) и соединении граничных точек