Смекни!
smekni.com

Техническое зрение роботов (стр. 5 из 8)

2.4.2.Аккумулятивная разность.

Как говорилось выше, разность кадров благодаря шуму часто содержит изолированные записи. Несмотря на то что число таких записей может быть сокращено или полностью ликвидировано в результате анализа связности пороговых уровней, этот процесс может также привести к по­тере изображений малых или медленно движущихся объектов. Ниже излагается подход для решения этой проблемы путем рассмотрения изменения в расположении пикселов на несколь­ких кадрах, т. е. в процесс вводится «память». Основная идея заключается в пренебрежении теми изменениями, которые воз­никают случайно в последовательности кадров и, таким образом, могут быть отнесены к случайному шуму.

Рассмотрим последовательность кадров изображения f(x,y,t1), f(x, у, t2), ..., f(x, у,tn) и допустим, чтоf(x, у, t1) является эталонным образом. Изображение аккумулятивной разности формируется в результате сравнения эталонного об­раза с каждым образом в данной последовательности. В процедуре построения изображения аккумулятивной разности имеется счетчик, предназначенный для учета расположения пик­селов. Его значение увеличивается каждый раз, когда возникает различие в расположении соответствующих пикселов эталон­ного образа и образа из рассматриваемой последовательности. Таким образом, когдаk-й кадр сравнивается с эталонным, запись в данном пикселе аккумулятивней разности означает, во сколько раз интенсивность пиксела k-го кадра отличается от ин­тенсивности пиксела эталонного образа. Различия устанавли­ваются, например, с помощью уравнения (*).

Приведенные выше рассуждения иллюстрируются рисунке. На рисунке ад приведены образы прямоугольного объекта (обозначенного нулями), движущегося вправо с постоянной ско­ростью 1 пиксел/кадр. Эти образы приведены в моменты вре­мени, соответствующие одному перемещению пиксела. На рис. (а) изображен кадр эталонного образа, на рис. (г) со 2-го по 4-й кадры последовательности, а на рис. (д)— 11-й кадр. Рис. (е— и) соответствуют изображениям аккумулятив­ной разности, которые можно объяснить следующим образом. На рис. (е) левая колонка из 1 обусловлена различием между объектом на рис. (а), и фоном на рис. (б). Правая колонка из 1 вызвана различием между фоном эталонного образа и пе­редним контуром движущегося объекта. Ко времени появления4-го кадра (рис. г), первый ненулевой столбец изображе­ния аккумулятивной разности указывает на три отсчета, что со­ответствует трем основным различиям между этим столбцом в эталонном образе и соответствующим столбцом в последующихкадрах. На рис. и показано общее число из 10 (представ­ленных «A» в шестнадцатеричной системе счисления) изменений этого положения. Остальные записи на этом рисунке объясня­ются аналогично.

Нередко полезно рассматривать три типа изображений акку­мулятивной разности: абсолютное, положительное и отрица­тельное. Последние два получаются из уравнения (*), вкотором нет модуля, а вместоf(x, у, ti) подставляется значение эталонного кадра. Предполагая, что числовые значения интен­сивности объекта превышают значения фона в случае, когда разность положительна, она сравнивается с положительным значением порогового уровня; если отрицательна, сравнение выполняется с отрицательным значением порогового уровня. Это определение заменяется на противоположное, если интенсив­ность объекта меньше фона.

Рис. Кадр эталонного образа (а), б—д соответственно 2-, 3-, 4- и 11-й кадры, е—и—изображения аккумулятивной разности для 2-, 3-, 4- и 11-го кадров .

9
10 00000000
11 00000000
12 00000000
a 13 00000000
14 00000000
15 00000000
16
9 9
10 00000000 10 1 1
11 00000000 11 1 1
12 00000000 12 1 1 е
б 13 00000000 13 1 1
14 00000000 14 1 1
15 00000000 15 1 1
16 16
9 9
10 00000000 10 21 21
11 0000000C 11 21 21
в 12 0000000C 12 21 21 ж
13 0000000C 13 21 21
14 00000000 14 21 21
15 00000000 15 21 21
16 16
9 9
10 00000000 10 321 321
11 00000000 11 321 321
г 12 00000000 12 321 321 з
13 00000000 13 321 321
14 00000000 14 321 321
15 00000000 15 321 321
16 16
9 9
10 00000000 10 A9876 5438887654321
11 00000000 11 A9876 5438887654321
12 00000000 12 A9876 5438887654321
д 13 00000000 13 A9876 5438887654321 и
14 00000000 14 A9876 5438887654321
15 00000000 15 A9876 543888.7654321
16 16

2.4.3.Определение эталонного образа.

Успех применения методов зависит от эталон­ного образа, относительно которого проводятся дальнейшие сравнения. Как уже говорилось выше, различие между двумя образами в задаче распознавания движущихся объектов опре­деляется путем исключения стационарных компонент при сохра­нении элементов, соответствующих шуму и движущимся объек­там. Проблема выделения образа из шума решается методом фильтрации или с помощью формирования изображения акку­мулятивной разности.

На практике не всегда можно получить эталонный образ, имеющий только стационарные элементы, и это приводит к не­обходимости построения эталона из набора образов, содержа­щих один или более движущихся объектов. Это особенно харак­терно для ситуаций, описывающих сцены со многими быстро­меняющимися объектами или в случаях, когда возникают частые изменения сцен. Рассмотрим следующую процедуру гене­рации эталонного образа. Предположим, что мы рассматриваем первый образ последовательности в качестве эталонного. Когда нестационарная компонента полностью вышла из своего положе­ния в эталонном кадре, соответствующий фон в данном кадре может быть перенесен в положение, первоначально занимаемое объектом в эталонном кадре. Когда все движущиеся объекты полностью покинули свои первоначальные положения, в резуль­тате этой операции воссоздается эталонный образ, содержащий только стационарные компоненты. Перемещение объекта можно определить с помощью операции расширения положительного изображения аккумулятивной разности.

3.ОПИСАНИЕ

В системах технического зрения проблемой описания назы­вается выделение свойств (деталей) объекта с целью распозна­вания. В идеальном случае дескрипторы не должны зависеть от размеров, расположения и ориентации объекта, но должны содержать достаточное количество информации для надежной идентификации объектов. Описание является основным резуль­татом при конструировании систем технического зрения в том смысле, что дескрипторы должны влиять не только на слож­ность алгоритмов распознавания, но также и на их работу. рассмотрим три основные катего­рии дескрипторов: дескрипторы границы, дескрипторы области и дескрипторы для описания трехмерных структур.

3.1.Дескрипторы границы.

3.1.1.Цепные коды.

Цепные коды применяются для представления границы в виде последовательности отрезков прямых линий определенной длины и направления. Обычно в основе этого представления лежит 4- или 8-связная прямоугольная решетка. Длина каждого отрезка определяется разрешением решетки, а направления задаются выбранным кодом. Отметимчто для представления всех направлений в 4-направленном цеп­ном коде достаточно 2 бит, а для 8-направленного цепного кода требуется 3 бит. Для порождения цепного кода заданной границы сначала выбирается решетка. Тогда, если площадь ячейки, расположенной внутри границы, больше определенного числа (обычно 50%), ей присваивается значение 1; в противном слу­чае этой ячейке присваивается значение 0. Окон­чательно мы кодируем грани­цу между двумя областями, используя направления.Результат кодирования в на­правлении по часовой стрелке с началом в месте, помеченном точкой. Альтернативная процедура состоит в разбиении границы на участки равной длины (каждый участок имеет одно и то же число пикселов) и соединении граничных точек