Смекни!
smekni.com

Технологические средства автоматизации (стр. 2 из 5)

ОУ функционально состоит из дифференциального усилителя и усилителя мощности. Дифференциальный усилитель собственно и обеспечивает формирование разностного сигнала и его усиление. Усиление по мощности и согласование выхода дифференциального усилителя с цепями, подключёнными к выходу ОУ обеспечивается усилителем мощности. Дифференциальный усилитель собран по симметричной мостовой схеме, состоящей из двух или четырёх транзисторов, не считая транзисторов стабилизатора тока, подключённого к коллекторным или эмиттерным (в зависимости от типа проводимости транзисторов) цепям транзисторов. Дифференциальный усилитель имеет два входа, подключённых соответственно к неинвертирующему и инвертирующему входу ОУ. Нагрузочная способность, максимальный выходной ток и максимальное выходное напряжение зависят от параметров усилителя мощности. В частности, максимальное выходное напряжение также зависит от напряжения питания ОУ. Напряжение питания ОУ обычно выбирается двуполярным. Это определяется наличием дифференциального усилителя и принципом работы электрического моста.

ОУ обычно выполняется в виде интегральной схемы.

Рассмотрим теперь работу аналогового компаратора напряжения, построенного на схеме с ОУ. Отличием компаратора от ОУ среди прочих является то, что выходной сигнал компаратора - цифровой, в то время как выходной сигнал ОУ - аналоговый. Преобразование аналогового сигнала ОУ в схеме компаратора может осуществляться соответствующим преобразователем уровня для некоторого типа логики или диодным ограничителем.

Пусть имеются два напряжения - сравниваемое и образцовое. Сравниваемое напряжение подано на неинвертирующий вход компаратора, а образцовое - на инвертирующий. Требуется, чтобы при равенстве этих напряжений на выходе компаратора появилась логическая 1. Пусть сравниваемое и образцовое напряжения не равны. Тогда разность этих напряжений будет не равна нулю. При этом на выходе ОУ компаратора будет усиленная по напряжению разность входных напряжений. Заметим, что можно всегда подобрать коэффициент усиления ОУ компаратора с таким расчётом, что даже малая разность входных напряжений будет давать Umax на выходе ОУ. Пусть также на выходе ОУ стоит некоторая схема, которая на выходе формирует напряжение по модулю равное выходному напряжению ОУ. Этой схемой может являться диодный выпрямитель напряжения. Таким образом, если входные сравниваемое и образцовое напряжения хоть немного отличаются, на выходе схемы выпрямителя будет Umax, а если они точно равны, то на выходе выпрямителя будет 0. Если теперь пропустить это напряжение через преобразователь уровня и проинвертировать, то получим требуемый результат сравнения. Заметим также, что коэффициент усиления ОУ компаратора определяет ширину импульса с амплитудой логической 1 на выходе компаратора при постоянной скорости изменения сравниваемого напряжения. Так как скорость сравниваемого напряжения может изменяться, то и ширина выходного импульса компаратора может изменяться при постоянном коэффициенте усиления ОУ. Для устранения этого эффекта на выходе компаратора может также ставиться формирователь импульсов определённой длительности при любой длительности входного импульса. Такой формирователь можно собрать на триггере Шмитта или блокинг-генераторе.

Если требуется, чтобы компаратор выдавал 1 при преобладании сравниваемого напряжения над образцовым, схема выпрямителя на выходе ОУ преобразуется для пропускания только положительного напряжения, а формирователь на выходе ОУ заменяется триггером, который устанавливается в 1 при равенстве входных напряжений и сбрасывается, если напряжение на выходе ОУ отрицательно.

Цифроаналоговый преобразователь (ЦАП) используется для преобразования цифрового кода в аналоговое напряжение и используется не только в качестве независимого элемента, но и входит в состав АЦП.

Принцип работы ЦАП основан на том, что единице в каждом разряде входного кода ставится в соответствие некоторое напряжение, которое добавляется к выходному и имеет значение, пропорциональное весу разряда. Таким образом, выходное напряжение пропорционально двоичному числу, определяемому входным кодом. Обычно, ЦАП поддерживает выходное напряжение на том же уровне до прихода команды записи. Это обеспечивается введением в ЦАП триггеров. Если запись в ЦАП разрешена, то триггеры устанавливаются в значения, соответствующие значениям разрядов входного кода. Если запись в ЦАП запрещена, то триггеры находятся в состоянии хранения и выходное напряжение ЦАП остаётся на том же уровне.

Обычно, ЦАП собирается на резисторной матрице, управляемой электронными ключами. Электронные ключи обеспечивают подключение резисторов матрицы к положительному или отрицательному потенциалу источника питания. Электронные ключи должны иметь малое сопротивление в открытом состоянии и очень большое сопротивление в закрытом. Это требование обеспечивается применением полевых МОП транзисторов с изолированным затвором.

Существует по крайней мере две схемы построения ЦАП. ЦАП с прецизионными резисторами имеет резисторы с сопротивлением, обратно пропорциональным весам разрядов входного кода. При этом каждый такой резистор подключён к соответствующему электронному ключу. Если в соответствующем разряде входного кода находится 1, ключ подключает резистор к положительному потенциалу источника питания, обеспечивая добавление к выходному напряжению АЦП напряжения, пропорционального весу данного разряда входного кода. Если в соответствующем разряде входного кода записан 0, то резистор отключается от положительного потенциала источника питания, не оказывая влияния на выходное напряжение ЦАП. Недостатком подобного ЦАП является то, что резисторы, входящие в его состав должны иметь очень высокую точность значения сопротивления, которое не должно изменяться при изменении температуры. Если это не так, то линейность преобразования ЦАП нарушается и может зависеть от температуры и других факторов.

Во втором типе ЦАП все резисторы имеют одинаковое сопротивление или разделены на две группы, сопротивления резисторов в каждой группе одинаково и отличается от другой группы в два раза. В цепи резисторов может использоваться то свойство, что два резистора с одинаковым сопротивлением, включённых параллельно, имеют общее сопротивление, равное половине сопротивления каждого. В настоящее время ЦАП первого типа практически не используются.

Вопрос 44.

Для схем с очень высокими напряжениями и очень большими токами созданы полупроводниковые приборы, называемые тиристорами. Один тиристор может работать при напряжениях до 4000 В и токах до 4000 А. В преобразователях тиристоры соединяют в каскады, рассчитанные на четверть миллиона вольт и более.

Тиристор состоит из двух транзисторов (npn и pnp), расположенных так, что коллектор pnp-части тиристора является базой npn-части, а коллектор npn-части – базой pnp-части. Если инжектировать небольшой ток в базу npn-части, то он создаст для эмиттера прямое смещение, и возникнет ток эмиттера. Этот ток, собранный коллектором npn-части, становится током базы pnp-части, который вызывает появление тока эмиттера этой части. Такой процесс будет повторяться до тех пор, пока вокруг общего коллекторного перехода не соберется заряд, достаточный для нейтрализации связанного заряда, и тогда напряжение на нем понизится до уровня ~0,7 В, соответствующего насыщению. Так происходит «включение» тиристора. «Выключается» же он при понижении тока ниже некоторого порогового уровня, называемого удерживающим током. Если сделать площадь эмиттера достаточно большой, то легко можно переключать колоссальные токи.

Тиристоры пропускают ток только в одном периоде переменного тока; лишь с изобретением симистора появился настоящий полупроводниковый переключатель переменного тока для регуляторов электродвигателей, регуляторов освещенности и других устройств. Симистор состоит из двух выполненных на одной кремниевой пластинке тиристоров, включенных параллельно, но противоположно. Один из тиристоров пропускает ток в одном полупериоде, а другой – в следующем. Для включения симистора предусматривается управляющий электрод. Чтобы выключить его, нужно прервать ток. Интересной особенностью симисторов является то, что они проводят ток любого направления и могут переключаться либо положительным, либо отрицательным управляющим сигналом

Вопрос 54.

Данный тип реле применяется для коммутация нагрузок в цепях постоянного и переменного тока; для работы в цепях переменного тока с постоянным смещением; в импульсных источники питания; в устройствах автоматического регулирования и управления.

Твердотельные оптоэлектронные реле с МОП - транзисторами на выходе являются альтернативой электромеханическим и полупроводниковым реле на основе тиристоров.

Прибор состоит из инфракрасного светодиода, оптически связанного с матрицей фотодиодов, которые работают в фотовольтрическом режиме и управляют выходным коммутирующим элементом, последний представляет собой пару МОП - транзисторов, соединенных истоками. При включении МОП - транзисторов в последовательную цепь получается линейный переключатель постоянного и переменного тока двунаправленного действия.

Основные характеристики
  • малый ток управления - 10 : 30 мА
  • наработка на отказ - 25 000 часов
  • коммутирование нагрузок в цепях постоянного и переменного тока;
  • совместимость с ТТЛ / ТТЛШ, КМОП
  • низкое сопротивление в открытом состоянии
  • малые утечки в закрытом состоянии - менее 100 мА
  • возможность коммутации малых токов - ~ 1мкА
  • высоковольтная монолитная схема Uиз. - не менее 1500 В / не менее 4000 В
  • диапазон рабочих температур -
  • Вопрос 64.