IA(тв) + kB(г)ÛjС(г)
которая происходит в аппарате, изображенном на рис. 636. Газ — реагент В проходит под исходным веществом А и образует соединение С, которое в интервале температур Т2®Т1находится в газообразном состоянии. Молекулы соединения С, увлекаемые избытком газа В или инертным газом (например, гелием или аргоном), переносятся в зон) кристаллизации, находящуюся при температуре Т1, где происходит обратная реакция разложения молекул С на твердое вещество А и газ В. Эта реакция происходит как па стенках аппарата, так и на монокристаллических подложках-затравках, предварительно введенных в аппарат. Поскольку поверхность подложки значительно меньше поверхности стенок аппарата, то выход материала, нарастающего на подложку, невелик.
Обозначим через в число молей газа реагента В, вводимого в аппарат, через п'В —число молей газа В, находящихся в свободном состоянии в зоне Т1 , через п"В —число молей газа В в зоне Т2, через п’с и п"с число молен соединения С соответственно в зонах Т1 и Т2. Баланс компонента В
nB=n’B+k/j *n’C= n’’B+k/j n’’C 6.57
Количество вещества А, вступающее в реакцию с В при температуре Т2, в пересчете на моль вводимого в систему реагента В, составляет i/j* n’C/nB.
Количество вещества А, выводимого из системы током газа T1 ,i/j· n’C/nB.
Количество вещества А (nA), выделяющегося при температуре T1,
NA/nB = i/j· n’C/nB.– i/j· n’’C/nB.= i/j·Dn’C/nB. (6,58)
Поскольку имеем дело с газом, целесообразно вводить в расчеты значения парциальных давлений всех компонентов РВ и РС- Тогда можно написать:
nC/nB=PC/PB (1/(1-PC/PB(j-k/j))
Если j = k, то выражение в скобках равно единице. Если же j=/=k, но PC<<PB , то и тогда выражение в скобках можно принять равным единице. Объединяя уравнения (6.57) и (6.58), находим количество перенесенного вещества А:
nA = i/j·DPCnB/PB 6.60
Зная величину констант равновесия для прямой и обратной реакций при температурах Т1 и Т2 и принимая, что общее давление в системе равно РB(РB>РC), можно рассчитать DРс, а следовательно, и выход реакции.
Расчеты эффективности реакций переноса сводятся, таким образом, к определению разности парциальных давлений молекул-переносчиков в зонах источника и кристаллизации. Перенос вещества существует тогда, когда эта разность имеет достаточно большое значение.
К группе алмазоподобных полупроводниковых соединений AnBVIотносятся следующие соединения: CdS, CdSe, ZnS, ZnSe, ZnTe, CdTe, HgSe, HgTe. Межатомные связи осуществляются sp3электронами, т. е. принимается, что связи носят преимущественно ковалентный характер, хотя разности электроотрица-тельностей атомов компонентов и доля ионной компоненты связи имеют большие значения. Первые четыре соединения кристаллизуются преимущественно в решетке типа вюрцита, а остальные в решетке типа сфалерита. В табл. 10.8 представлены экспериментально определенные параметры решетки, расстояния между атомами А и ближайшие расстояния между разнородными атомами А—В, определенные экспериментально и рассчитанные согласно значениям ковалентных радиусов.
Таблица 10.8
СоединенияZnS ZnSe ZnTe CdS CdSe CdTe HgSe HgTe | a, A | d(A — B) (эксперимент) | d(A— A) 3,82 4,01 4,32 4,12 4,28 4,58 4,30 4,57 | d(A— В) ковалентные (расчет) |
5,4093 5Д687 Ь,Ю37 5,820 6,05 6,481 0,084 6,460 | 2,34 2,45 2,0t 2,52 2,62 2,80 2,63 2,80 | |||
2,35 2,45 2,63 2,52 2,02 2,80 2,62 2,РО |
Сравнение экспериментально определенных межатомных расстояний с расчётными, для которых использовались значения тетраэдрических ковалентных радиусов, показывает, что характер связей в этих соединениях преимущественно ковалентный (тетраэдрические радиусы элементов; Zn—1,31; Cd—1,48; Hg—1,48; S—1,04; Se—1,14; Те—1,32).
Как и в случае соединений АШВV, при изменении среднею атомного веса соединения наблюдаются закономерные изменения запрещенной зоны, температуры плавления и ряда других параметров. Увеличение ионной составляющей связи (по сравнению с соединениями AIIIBV) проявляется в более низких значениях подвижностей. Структурно-чувствительные свойства чистых и легированных соединений AITBVIв значительной мере определяются природой и концентрацией точечных дефектов, обусловливающих отклонение от стехиометрии.
Измерения проводимости чистых соединений AIIBVIпоказывают, что окислы, сульфиды и селениды цинка, кадмия и ртути, при любых условиях изготовления обладают только электронной электропроводностью. Среди теллуридов теллурид цинка всегда обладает дырочной электропроводностью, а теллуриды кадмия и ртути могут быть получены как n-, так и p-типа, в зависимости от условий изготовления.
Причины, обусловливающие преимущественное проявление того или иного типа электропроводности. Величина проводимости всех чистых соединений АIIВVI может быть значительно изменена (на несколько порядков) путем термообработки монокристаллов в парах компонентов. Это свидетельствует о том, что все соединения АIIВVIявляются нестехиометрическими, с довольно широкой областью существования тетраэдрической фазы.
Электропроводность чистых и легированных соединении определяется тремя факторами:
1) появлением в решетке кристалла донорных или акцепторных центров;2) ионизацией созданных центров;
3) подвижностью носителей заряда.
Учет этих факторов необходим, чтобы найти объяснение неизменности типа электропроводности в одних случаях и управляемости типом и величиной проводимости в других.
Совершенно очевидно, что если в материал не удается ввести акцепторные центры, а донорные центры легко образуются, то материал будет n-типа. Возможен также случай, когда материал содержит акцепторные центры, но их энергия ионизации столь велика, что акцепторные свойства не проявляются.
Стехиометрический состав может соответствовать одной из границ области существования соединения. Тогда, очевидно, отклонение от стехиометрии может быть обусловлено возникновением точечных дефектов только одного типа с донорными или акцепторными свойствами (рис 1..8).
Если же отклонения от стехиометрического состава возможны в обе стороны, то преимущественное возникновение дефектов с донорными или акцепторными свойствами будет определяться величиной энтальпии образования донорных и акцепторных центров. Точечные дефекты, обусловливающие отклонения от стехиометрии, возникают в результате взаимодействия кристалла с внешней средой. Это взаимодействие эффективно только при высоких температурах, т. е. в условиях, когда все создаваемые дефекты ионизированы. Концентрация ионизированных дефектов, создаваемых в кристалле, взаимодействующем с паровой фазой, где парциальное давление паров.
Если в кристалле образуются вакансии электроположительного элемента М, способные к m-кратной ионизации (при температуре синтеза кристалла), то этот процесс можно описать квазихимическим уравнением:
Мм*«Vм+mh + М(г). . (10.6)
Применяя закон действия масс, находим
[Vмm] pmPм = KVm = KvKa,..Kam,
где
KVm —константа равновесия реакции образования нейтральных вакансий;
KvKa,..Kam, — константы равновесий реакций, описывающих последовательные этапы ионизации образовавшихся вакансий, которые характеризуются энергиями ионизации ЕП1, Еа„ Еат
Если энергия образования вакансий больше энергии, выигрываемой при захвате электрона вакансий, то электропроводность определяется условием
п = p = Klm/'2, а общая концентрация вакансий
[Vм]общ =[Vмm]= KVm = KVKvKa,..Kam,./ Klm/'2
Если энергия образования вакансии меньше энергии, выигрываемой при захвате электрона вакансий (Е2— Е4>Нv), то электропроводность определяется условием p = m[Vмm], а общая концентрация вакансии:
[Vм]общ =[Vмm] = (KVKvKa,..Kam,./mmPM)1/m+1. (1.8)
С учетом известных экспериментальных данных, а также согласно изложенному дырочную электропроводность ZnTe можно объяснять как результат двукратной ионизации вакансий Vzn". Отсюда следует, что общая концентрация дефектов данного типа зависит от их энергии ионизации: при малой энергии ионизации возрастает и общее число дефектов данного вида и число дефектов, ионизированных при температуре измерения. Повышение общей концентрации дефектов при их многократной ионизации энергетически выгодно, несмотря на затрату энергии на последовательные процессы ионизации, ввиду того что энтропия кристалла возрастает с увеличением числа свободных носителей. Многократная ионизация донорных или акцепторных центров тем вероятнее, чем меньше энергия ионизации. Таким образом, чем меньше энергия ионизации дефекта, например вакансии Vzn, тем больше вероятность ее полной ионизации при температуре синтеза кристалла или его термообработки, тем больше концентрация акцепторных центров, созданных при высокой температуре, и тем большее их число будет ионизировано при температуре измерения; в результате материал будет обладать дырочной электропроводностью. В соединениях могут образовываться не только акцепторные вакансии (Vм), но и донорные вакансии (Vx) или донорные межузельные атомы (МI). Если энергии ионизации донорных центров малы и приблизительно равны энергии ионизации акцепторных центров, то материал может быть как электронного, так и дырочного типа электропроводности, в зависимости от условий синтеза. По это может иметь место только тогда, когда энтальпия образования донорного и акцепторного дефектов сравнимы. Если же энергия двукратной ионизации акцептора значительно меньше, чем энергия двукратной ионизации донора, т. е. составляет лишь часть запрещенном зоны, то, очевидно, число акцепторов будет преобладать над числом доноров и материал будет р-типа.