Смекни!
smekni.com

Гелиоэнергетика: состояние и перспективы (стр. 6 из 9)

Пусть n-полупроводник приводится в контакт с p-полупроводником. Электроны из n-полупроводника, где их концентрация выше, будут диффундировать в р-полупроводник, где их концентрация ниже. Диффузия же дырок происходит в обратном направлении.

В n-полупроводнике из-за ухода электронов вблизи границы остается нескомпен­сированный положительный объемный заряд неподвижных ионов. В р-полупроводнике из-за ухода дырок вблизи границы образуется отрица­тельный объемный заряд неподвижных ионов (рис. 11). Эти объемные заряды образуют у границы двойной электрический слой (запирающий слой), поле которого, направленное от n-области к p-области, препятствует дальнейшему переходу электро­нов в направлении п→р и дырок в направлении р→п.

Под действием света, проникающего сквозь тонкий слой n-полупроводника, в нем происходит внутренний фотоэффект - образуются пары зарядов электрон-дырка. Если имеется внешняя цепь, то вновь образованные электроны, не имея возможности пройти сквозь запирающий слой, устремляются в нее. Дырки же легко проходят сквозь запирающий слой к р-полупроводнику, где происходит рекомбинация - в цепи начинает протекать ток.

Фотоэлементы с вентильным фотоэффектом, обладая, подобно элементам с внешним фотоэффектом, строгой пропорциональностью фототока интенсивности излучения, имеют большую по сравнению с ними интегральную чувствительность (см. табл. 6) и не нуждаются во внешнем источнике ЭДС. К числу вентильных фотоэлементов относятся германиевые, кремниевые, селеновые, сернисто-серебряные и др.

Таблица 6

Интегральная чувствительность некоторых полупроводниковых материалов

Фотоэлементы

Максимальная чувствительность, мкА/лм

С внешним фотоэффектом

Меднозакисный

Селеновый

Сернистосеребряный

Сернистоталлиевый

Германиевый

Кремниевый

150

100

600

8000

11000

30000

35000

Конструктивно любой вентильный фотоэлемент довольно прост. Изготавливается так называемый ниж­ний электрод, представляющий собой металлическую пластинку, толщиной от одного до двух миллиметров. Форма пластинки не имеет никакого принципиального значения и определяется лишь назначением фотоэлемента. Нижний металлический электрод должен быть механи­чески прочным. На него наносится тонкий слой того или иного полупроводника. Затем он подвергается соответ­ствующей обработке, цель которой заключается в созда­нии в толще полупроводника р-n-перехода. Когда эта цель достигнута, на наружную поверхность в большин­стве случаев наносится верхний металлический электрод, представляющий собой тонкий полупрозрачный слой металла.

Иногда обработка полупроводникового слоя для созда­ния в нем р-n-перехода проводится при нанесенном уже верхнем металлическом электроде. Бывает и так, что полупроводник обрабатывается в отсутствии обоих элект­родов. Последние создаются уже после образования в полу­проводниковом слое р-n-перехода. При изготовлении некоторых фотоэлементов р-n-переход образуется в про­цессе нанесения электрода.

Вся эта система помещается в оправку с окошком для светового по­тока. В оправку вмонтиро­ваны две токовые клеммы. Одна из них соединяется с нижним электродом, другая — с верхним.

Для предохранения на­ружной поверхности фотоэле­мента, от вредного влияния атмосферного воздуха иногда она покрывается прозрачным лаком.

Если фотоэлемент изготавливается из хорошо прово­дящего полупроводникового вещества, например кремния или германия, то верхний электрод может быть выполнен в виде кольца, если фоточувствительная поверхность имеет форму диска, или прямоугольной рамки.

Когда на верхний электрод фотоэлемента падает лу­чистый поток, то некоторая его часть отражается от метал­лического слоя, другая часть поглощается в толще этого слоя и, наконец, остальная часть проходит сквозь послед­ний и поглощается в прилегающей области полупровод­ника. Это приводит к освобождению пар электрон-дырка, о чем было рассказано выше. В резуль­тате перемещения дырок к одному электроду, а электро­нов к другому, они приобретут заряд противопо­ложных знаков и между ними возникнет разность по­тенциалов. Ее величина до определенного предела будет тем большей, чем больше интенсивность лучистого потока.

Что касается КПД современных фотоэлектрических преобразователей, то экспериментально показано, что в них преобразуется только около 50% падающей на элемент солнечной энергии, также показано, что при правильном выборе материалов и достаточной освещенности можно добиться того, чтобы в процессе генерирования энергии принимало участие не менее 80% возникающих под действием фотонов пар электрон-дырка. Фотоэлемент с такими параметрами будет обладать КПД порядка 20%.

Об эффективности хорошо согласованного с на­грузкой фотоэлектрического генератора, работающего в условиях тропиков, мы можем судить по данным рис. 12.

Рис. 12. Зависимость выходной мощности фотоэлектрического ге­нератора от интенсивности солнечного излучения

При интенсивности солнечной радиации Р=800 Вт/м2 полезная мощность практически не превышает 130 Вт/м2. Куда же расхо­дуется оставшаяся неиспользованной энергия? Следует избегать того, чтобы эта энергия затрачивалась на усиление колебаний кристаллической решетки, по­скольку в противном случае возбужденные носители могут преодолевать запирающий слой различ­ными «окольными» путями. Поскольку интенсивность колебаний решетки непосредственно связана с темпе­ратурой, то в равной мере можно говорить о не­обходимости поддерживать температуру на низком уровне. Этого добиваются различными способами. Обычно при повышении рабочей температуры с 20 до 100° С КПД установки снижается на одну треть. Очевидно, ту часть спектра солнечной радиации, кото­рая расходуется непроизводительно, можно устранить с помощью соответствующих отражающих покрытий, но внутри генератора всегда происходят какие-нибудь тепловые процессы, поэтому необходимо обеспечить по возможности наилучший отвод тепла через тепло­проводность или лучеиспускание.

Глава 3. Перспективы развития фотоэлектрических генераторов.

Вопреки различным оптимистичным прогнозам про­стейшие фотоэлектрические генераторы по КПД пока еще не превосходят системы на основе механических тепловых машин и термоионных преобразователей. Низкий КПД фотоэлектрического генератора объясняется двумя основными причинами: с одной стороны, значительная часть световых фотонов обладает энер­гией, которая не оказывает нужного действия на электроны материала, а с другой - разность потенциа­лов V на нагрузке составляет лишь малую часть от напряженности поля Eз в запрещенной зоне. Весьма вероятно, что проводимые в на­стоящее время исследования позволят создать новые устройства, в которых указанные недостатки окажутся менее существенными. В высоколегированных полу­проводниках, где ширина запрещенной зоны значи­тельно больше, второй из названных недостатков вы­ражен значительно слабее. В этом случае число но­сителей, преодолевающих р-n-переход «окольными» путями, уменьшается. Проводятся перспек­тивные исследования по созданию более сложных устройств, схематически показанных на рис. 13.

Рис. 13. Типы фотоэлектрических генераторов: а—однокаскадный; б—многокаскадный.

Солнечная радиация сначала попадает на элемент, изготовленный из полупроводника с большой шириной запрещенной зоны, благодаря чему он обладает высо­ким КПД в нужной нам части солнечного спектра. Фотоны с энергиями ниже Eз не оказывают воздей­ствия на этот элемент, материал которого для них по существу является прозрачным. Пройдя через первый каскад, эти фотоны попадают во второй, выполненный из материала с меньшей величиной Eз (по сравнению с первым элементом). Его способность захватывать эти фотоны высока, хотя КПД ниже, чем у первого элемента. Такое сочетание двух солнечных элементов позволяет получить более высокий суммарный КПД, чем для каждого из них в отдельности. Возможность даль­нейшего совершенствования такого рода устройств от­крывается с применением для их изготовления инте­гральной технологии и созданием так называемого интегрального генератора, в котором ширина запре­щенной зоны изменяется с глубиной; она велика у облучаемой поверхности, а затем уменьшается в глубь материала. Эта и другие новые разработки фотоэлект­рических генераторов открывают дальнейшие перспек­тивы повышения их КПД; предполагается, что КПД фотоэлектрических систем может достигнуть 50—60%, то есть превысить КПД любых других систем. Особое внимание уделяется вопросу удешевления конструк­ций фотоэлектрических генераторов, поскольку соз­данные до настоящего времени устройства оказались чрезвычайно дорогостоящими.

Еще 10-20 лет назад цена фотоэлектрического пре­образователя площадью в 1 см2 составляла в среднем несколько долларов. Причины такой высокой стоимо­сти понятны, если учитывать чрезвычайно высокие требования к чистоте полупроводниковых материалов. В последние годы удалось удешевить производство, заменив дорогой монокристаллический кремний поликристаллическим и разработав новые технологии изготовления элементов. В результате стоимость наземных солнечных батарей снизилась в несколько раз. Также вместо чистого кремния стали применять относительно новый полупроводник алюминий-галий-мышьяк (AlGaAs) - с ним связывают надежды на новое снижение стоимости фотоэлементов.