Омский Государственный Технический Университет
Курсовая Работа на тему:
«Геометрическая оптика».
Работу выполнил:
студент группы В-229
Ланцов Андрей
Работу проверил:
Суриков В. И.
Омск – 2000
План.
1. Введение
2. Геометрическая оптика
а) Закон прямолинейного распространения света.
б) Закон независимости световых лучей.
в) Закон отражения света.
г) Закон преломления света.
3. Заключение
Введение.
Первые представления древних ученых о свете были весьма наивны. Считалось, что из глаз выходят особые тонкие щупальца и зрительные впечатления возникают при ощупывании ими предметов. Останавливаться подробно на подобных воззрениях сейчас, разумеется, нет нужды.
От источника света, например, лампочки, свет распространяется во все стороны и падает на окружающие предметы, вызывая, в частности, их нагревание. Попадая в глаз, свет вызывает зрительное ощущение – мы видим. Можно сказать, что при распространении света происходит передача воздействий от одного тела (источника) к другому (приемнику).
Свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других – как поток особых частиц (фотонов).
Геометрическая оптика
Длины воспринимаемых глазом световых волн очень малы (порядка м). Поэтому распространение видимого света можно в первом приближении рассматривать, отвлекаясь от его волновой природы и полагая, что свет распространяется вдоль некоторых линий, называемых лучами. В предельном случае, соответствующем l → 0, законы оптики можно сформулировать на языке геометрии. В соответствии с этим раздел оптики, в котором пренебрегают конечностью длин волн, называется геометрической оптикой. Другое название этого раздела – лучевая оптика.
Основу геометрической оптики образуют четыре закона: 1) закон прямолинейного распространения света; 2) закон независимости световых лучей; 3) закон отражения света; 4) закон преломления света.
В основу геометрической оптики может быть положен принцип, установленный французским математиком Ферма в середине XVII столетия. Из этого принципа вытекают законы прямолинейного распространения, отражения и преломления света. В формулировке самого Ферма принцип гласит, что свет распространяется по такому пути, для прохождения которого ему требуется минимальное время.
Поэтому все лучи, вышедшие из фокуса F1 и пришедшие после отражения в фокус
F2, являются таутохронными. В этом случае оптическая длина пути стационарна. Если заменить поверхность эллипсоида поверхностью ММ, имеющей меньшую кривизну и ориентированной так, что луч, вышедший из точки F1, после отражения от ММ попадает в точку F2, то путь F1ОF2 будет минимальным. Для поверхности NN, имеющей кривизну большую, чем у эллипсоида, путь F1ОF2 будет максимальным.
Стационарность оптических путей имеет место также при прохождении лучей через линзу (рис. 5). Луч РОР΄ имеет самый короткий путь в воздухе (где показатель преломления n практически равен единице) и самый длинный путь в стекле (n ≈ 1,5). Луч PQQ΄P΄ имеет более длинный путь в воздухе, но зато более короткий путь в стекле. В итоге оптические длины путей для всех лучей оказываются одинаковыми. Поэтому лучи таутохронны, а оптическая длина пути стационарна.
Рассмотрим волну, распространяющуюся в неоднородной изотропной среде вдоль лучей 1, 2, 3 и т. д. (рис. 6). Неоднородность будем считать достаточно малой для того, чтобы на отрезках лучей длины λ показатель преломления можно было считать постоянным. Построим волновые поверхности S1, S2, S3 и т. д. таким образом, чтобы колебания в точках каждой следующей поверхности отставали по фазе на 2π от колебаний в точках предыдущей поверхности. Колебания в точках, лежащих на одном и том же луче, описываются уравнением ξ = a cos (ωt – κr + a) (r – расстояние, отсчитываемое вдоль луча). Отставание по фазе определяется выражением κ∆r, где ∆r – расстояние между соседними поверхностями. Из условия κ∆r = 2π получаем, что ∆r = =2π/κ = λ. Оптическая длина каждого из путей геометрической длины λ равна nλ = λ (так как λ = λ /n). Согласно (рис. 4) время τ, за которое свет проходит некоторый путь, пропорционально оптической длине этого пути. Следовательно, равенство оптических
Рис. 5 |