В тепловых процессах осуществляется передача тепла — теплопередача от одного теплоносителя к другому, причем эти теплоносители в большинстве случаев разделены перегородкой {стенкой аппарата, стенкой трубы и т. п.). Количество передаваемого тепла определяется основным уравнением теплопередачи.: Q=KDtmF.
В этом уравнении коэффициент теплопередачи К является суммирующим коэффициентом скорости теплового процесса, учитывающим необходимость перехода тепла от ядра потока первого теплоносителя к стенке (теплоотдачей), через стенку {теплопроводностью) и от стенки к ядру потока второго теплоносителя (теплоотдачей). Коэффициент теплопередачи определяет количество тепла, которое передается от одного теплоносителя к другому через единицу площади разделяющей их стенки в единицу времени при разности температур между теплоносителями 1 град.
Соотношение для расчета коэффициента теплопередачи можно вывести, рассмотрев процесс передачи тепла от одного теплоносителя к другому через разделяющую их стенку. На рис. 1 показана плоская стенка толщиной d, материал которой имеет коэффициент теплопроводности l. По одну сторону стенки протекает теплоноситель с температурой tf1в ядре потока, по другую сторону—теплоноситель с температурой tf2. Температуры поверхностей стенки tw1 и tw2. Коэффициенты теплоотдачи a1 и a2. При установившемся процессе количество тепла, передаваемого в единицу времени через площадку F от ядра потока первого теплоносителя к стенке, равно количеству тепла, передаваемого через стенку и от стенки к ядру потока второго теплоносителя.
Рис. 1. Характер изменения температур при теплопередаче через плоскую стенку
Это количество тепла можно определить по любому из соотношений:
Из этих соотношений можно получить:
Складывая эти уравнения, получим:
откуда
Из сопоставления уравнений найдем
откуда
Величина 1/К, обратная коэффициенту теплопередачи, представляет собой термическое сопротивление теплопередаче. Величины l/a1 и 1/a2 являются термическими сопротивлениями теплоотдаче, а d/l—термическим сопротивлением стенки. Из уравнения следует, что термическое сопротивление теплопередаче равно сумме термических сопротивлений теплоотдаче и стенки.
При расчетах коэффициента теплопередачи в случае многослойной стенки необходимо учитывать термические сопротивления всех слоев. В этом случае коэффициент теплопередачи определяют по формуле
где i—порядковый номер слоя; п—число слоев.
Рис. 2. Характер изменения температур теплоносителей при прямоточном движении их вдоль поверхности теплообмена
Движущей силой тепловых процессов является разность температур сред, при наличии которой тепло распространяется от среды с большей температурой к среде с меньшей температурой. При теплопередаче от одного теплоносителя к другому разность между температурами теплоносителей не сохраняет постоянного значения вдоль поверхности теплообмена, и поэтому в тепловых расчетах, где применяется основное уравнение теплопередачи к конечной поверхности теплообмена, необходимо пользоваться средней разностью температур.
На рис. 2 показан характер изменения температур теплоносителей «при прямоточном движении их вдоль поверхности теплообмена. Один из теплоносителей охлаждается от температуры t’1 до t’’1, другой нагревается от t’2 до t’’2. Количество тепла, переданное в единицу времени от первого теплоносителя ко второму на произвольно выделенном элементе теплообменной поверхности можно определить по основному уравнению теплопередачи:
где К—коэффициент теплопередачи; t1 и t2—температуры теплоносителей по обе стороны элемента dF.
В результате теплообмена на элементе поверхности температура первого теплоносителя понизится на dt1 а второго— повысится на dt2
где G1 и G2—расходы первого и второго теплоносителей; c1 и с2—теплоемкости первого и второго теплоносителей.
Вычитая равенство (в) из равенства (б), получим:
Подставив значения G1c1 и G2c2 из уравнений (е) и (ж) в равенство (д), имеем:
Подставив значение dQ из уравнения (а) в равенство (г) и выполнив преобразования, имеем
Обозначив через Q общее количество тепла, переданное в единицу времени от первого теплоносителя ко второму на всей теплообменной поверхности F, из уравнения теплового баланса, получим:
Проинтегрировав уравнение при постоянном К, получим
Обозначив наибольшую разность температур между теплоносителями Dtb= t’1-t’2, а наименьшую Dtм= t’’1-t’’2, подставим соотношение в следующем виде:
Сопоставив уравнения, получим соотношение для определения средней разности температур:
Это соотношение справедливо также и для случая противоточного движения теплоносителей вдоль поверхности теплообмена.
При небольших изменениях температур теплоносителей, когда Dtм/Dtb,³0,5 среднюю разность температур можно вычислять как среднеарифметическую:
При этом ошибка не превышает 4%.
При перекрестным токе теплоносителей среднюю разность температур можно вычислять по формуле с поправочным коэффициентом eDt:
Поправочный коэффициент eDt находят по графикам в зависимости от соотношения температур теплоносителей. В литературе представлены графики для некоторых случаев перекрестного тока теплоносителей. Величины Р и R, указанные на этих графиках, находят по формулам:
НАГРЕВАНИЕ ПРОМЕЖУТОЧНЫМИ ТЕПЛОНОСИТЕЛЯМИ
При нагревании многих материалов для сохранения качества продуктов или обеспечения безопасной работы недопустим даже кратковременный их перегрев. В этих случаях для обогрева применяют промежуточные теплоносители, которые сначала нагреваются топочными газами, а затем передают воспринятое тепло обрабатываемому материалу.
В качестве промежуточных теплоносителей применяют минеральные масла, перегретую воду, высокотемпературные органические теплоносители (ВОТ), расплавленные смеси солей и др.
Нагревание топочными газами через жидкостную баню относится к простейшим способам нагревания промежуточными теплоносителями.
В случае нагревания на масляной бане (до температур 200—250 °С) аппарат снабжают рубашкой, заполненной маслом. Топочные газы омывают рубашку и передают тепло маслу, а масло через стенки аппарата—обрабатываемым материалам. Рубашка соединена трубопроводом с расширительным бачком, в который перетекает часть масла, когда объем его увеличивается при нагревании. В этот же бачок выбрасывается масло при бурном вскипании влаги (почти всегда содержащейся в свежем масле) в случае нагревания масла выше 100— 120 °С.