Смекни!
smekni.com

Гипотезы о природе шаровой молнии (стр. 5 из 6)

n = 5·1019 электрон/см3.

Разделение зарядов в плазменном тороиде начинается в то время, когда он еще находится в канале линейной молнии. Причиной разделения зарядов являются дрейфовые движения спиралей протонов и электронов в мощном магнитном поле линейной молнии вертикально в противоположные стороны внутри широкой ионной спирали азота и кислорода. Представим себе, что в результате разделения зарядов и последующего сжатия в плазме шаровой молнии оказалось, что на длине 1 см концентрация электронов изменилась на 1%. Тогда Δn = 5·1017 электрон/см3, x = 1 см, и от этого разделения зарядов возникает электрическое поле:

E = 9·1011 В/см.

Как видим, при однопроцентном разделении зарядов, электрическое поле, возникающее в плазме, может быть непомерно большим (если считать, что все атомы плазмы ионизованы). Но даже, если разделение зарядов в шаровой молнии составит миллиардную долю процента на длине 1 см, то и при таком ничтожном проценте в ней возникает электрическое поле 900 В/см. Казалось бы, отсюда можно заключить, что в шаровой молнии возможно образование электрического конденсатора весьма большой энергии. В шаровой молнии разность потенциалов может быть образована не только между разделяющимися при дрейфе спиралями протонов и электронов, но также и между теми же спиралями электронов и нижней половиной спиралей ионов азота и кислорода, составляющих внешнюю оболочку шаровой молнии. Однако емкость этих двух запараллеленных конденсаторов невелика, и в зависимости от размеров молнии может составить по приблизительной прикидке порядка от 1000 пФ до 5000 пФ.

Если предположить, что образовавшийся в молнии конденсатор выдержит разность потенциалов, например, 106 вольт, то и в этом случае его энергия по большей мере составит 2500 Дж, что не так много.

W = Ѕ · cu2 = Ѕ · 5·109 Ф · (106 В)2 = Ѕ · 5·103 Дж = 2500 Дж

Но такие большие и значительно меньшие напряжения конденсатор молнии явно не выдержит. Вероятно, взрываются шаровые молнии оттого, что происходит электрический пробой ее конденсатора.

При взрыве шаровой молнии наблюдатели указывают на производимые ею большие разрушения. По-видимому все дело в том, что разрушения производятся не большой энергией, а большой мгновенной мощностью шаровой молнии, так как ее энергия при взрыве высвобождается за доли секунды. (Многие, наверное, видели, как десантники ребром ладони мгновенно рушат стопку из нескольких кирпичей. Но приложите к руке энергию в десятки раз большую и давите на кирпичи ребром ладони медленно – скорее всего будет раздавлена ладонь, а кирпичи останутся целыми.)

Шаровая молния иногда убивает животных и людей. Общеизвестно, что живые организмы хорошо проводят электрический ток. Если взрыв шаровой молнии – это мощный электрический разряд, то, как следствие, в близлежащих проводниках наводятся значительные вихревые токи, которые при неблагоприятных обстоятельствах могут убить живой организм. То же самое происходит и с металлическими проводниками. Если шаровая молния взрывается вблизи проводника или при его касании, то наведенными токами мелкие детальки могут расплавиться, а у больших – возникают оплавленные раковины.

Говорят, что из взрывающейся молнии вылетают маленькие линейные молнии. Такие наблюдения подтверждают электрическую природу шаровой молнии. Очевидно, при взрыве видят вспышку электрического пробоя конденсатора; или же вслед за взрывом действительно между распыленными ионными и электронными облачками или землей возникают небольшие линейные молнии.

По поводу свечения и цвета шаровой молнии. На свечение шаровых молний во многом оказывает влияние наличие в ее плазме возбужденных молекул и атомов воздуха, которые при возвращении в основное состояние испускают дискретное и рекомбинационное излучения. Так, возбужденные атомы кислорода, возвращаясь в основное состояние, высвечивают зеленую и красную линии спектра. Возбужденные молекулы азота высвечиваются темно-красным светом. А ионизованные молекулы азота при рекомбинации высвечиваются синими и фиолетовыми линиями спектра. Поэтому в течение жизни шаровой молнии спектр линейчатого излучения плазмы испытывает изменение от белого цвета до темно-красного. (Основные цвета: красный + зеленый + синий образуют белый цвет; синий + зеленый образуют голубой цвет; красный + зеленый = желтый цвет; красный + синий = пурпурный цвет) [1, стр. 161; 6, стр. 213].

Вихреподобная модель шаровой молнии

Между плазмой и газом (воздухом) нет резкой границы. Плазма подчиняется газовым законам и во многих отношениях ведет себя как газ. Плазменные вихревые кольца в виде тороидов могут образоваться у торцов линейной молнии и без участия ее кругового магнитного поля; то есть так, как они образуются из воздуха, если небольшую порцию воздуха (для наблюдения подкрашенного дымом) вытолкнуть из какой-нибудь полости через небольшое отверстие [7, стр. 13...24]. Такие вихревые кольца, наверное, многие наблюдали при взрывном выхлопе отработанного газа у автомашин или тракторов. Был даже проект забрасывать дымы заводов высоко в атмосферу при помощи таких вихревых колец большого размера, поскольку самые высокие трубы этого не обеспечивают.

Для получения и демонстрации воздушных вихревых колец используют очень простое устройство: обычный ящик, у которого с одной стороны имеется отверстие диаметром 3...5 см, а с противоположной – тугая мембрана из кожи или клеенки. Резким, коротким ударом по мембране сообщают прилегающему слою воздуха некоторую скорость. Этот слой, придя в движение, вызывает уплотнение соседнего слоя, тот – следующего и так далее, когда уплотнение дойдет до отверстия, из него наружу вырвется струя воздуха. В движущейся струе воздуха давление меньше, чем в покоящемся воздухе, находящемся снаружи непосредственно за кромками отверстия, и оттуда произойдет его засасывание в струю. Одновременно движущаяся струя упрется в покоящийся воздух по фронту, несколько уплотнит его, а сама при этом радиально растечется в стороны и далее назад к кромкам отверстия в образовавшееся разрежение воздуха, ушедшего в струю. Таким путем происходит завихрение воздуха в виде тороида. Кроме завихрения тороид получает импульс движения вперед и улетает от отверстия на десятки метров. (Еще раз надо отметить, что удар по мембране должен быть очень коротким, иначе струя воздуха раздвинет впереди покоящийся воздух и тороид не получится.)

Нечто подобное может происходить и при разряде линейной молнии. На торце линейной молнии, упирающейся в землю, возникает клубок из плазмы. При последующих импульсах этого же разряда молнии возникают условия, сходные с условиями образования воздушных тороидальных вихрей. Плазма, вытолкнутая из канала очередного импульса молнии, встретив препятствие со стороны клубка плазмы, заворачивается в тороид. В первые мгновения все тело тороида состоит из вращающихся колец заряженных частиц. Вокруг каждой из них тут же возникает магнитное поле, и, следовательно, вдоль всего тороида возникает продольное магнитное поле. А те кольца заряженных частиц, которые оказались не строго перпендикулярно к полю, а под углом к нему, мгновенно разворачиваются в ларморовские спирали. Столкновения с другими частицами приводят к тому, что вскоре и основная масса заряженных частиц движется по ларморовским спиралям. Вслед за продольным возникает поперечное магнитное поле. Оба магнитных поля стягивают тороид в овал, отграничивают плазму от внешней среды и в результате образуется шаровая молния. И в этом втором варианте образования шаровой молнии ионы кислорода и азота движутся по спиралям большого радиуса, образующим внешнюю оболочку молнии, а протоны и электроны движутся по спиралям малого радиуса внутри широкой ионной спирали. Далее в результате дрейфовых перемещений в образовавшемся магнитном поле может произойти разделение зарядов и образование электрического конденсатора, то есть во втором варианте образования шаровой молнии происходит все так же, как в первом.

Шаровая молния – генератор колебаний

Пожилые связисты, наверное, помнят, что начальный период в развитии радиотехники связан с использованием в ней плазмы. На заре радиотехники главным элементом в радиопередатчиках была плазма. Это она сначала в виде искрового разряда, а затем в виде дугового разряда обеспечивала в те времена работу довольно мощных (до 1000 кВт) радиопередатчиков.

В [3, стр. 864] приведена вольтамперная характеристика электрического разряда в газах, где имеется участок, приобретающий падающий характер. В этом месте разряд в газе получил название дуговой. Дуговой разряд характерен тем, что при увеличении тока, проходящего через плазму, не увеличивается падение напряжения на ее сопротивлении, а наоборот – уменьшается. То есть при дуговом разряде плазма обладает «отрицательным» сопротивлением. «Отрицательное» сопротивление дугового разряда, включенного в колебательный контур, суммируется с «положительным» сопротивлением контура и в результате общее сопротивление контура оказывается равным нулю или слегка «отрицательным». В этом случае колебания в контуре будут обязательно незатухающими, что и обеспечивало работу старинных радиопередатчиков.

Дуговой разряд хорошо горит при атмосферном давлении. В этой связи возникает мысль: не является ли шаровая молния сама генератором электромагнитных незатухающих колебаний, генерируемых некоторое время по вышеуказанному принципу. Вполне может оказаться, что разряд линейной молнии в землю – это и есть дуговой разряд. Вытолкнутые из дугового раскаленного клубка плазмы шаровые молнии, пока не остыли, сохраняют некоторое время свойства дугового разряда. А по предложенной идее шаровая молния является тороидальным плазмоидом, сжатым в овал, а в нем к этому времени уже образовался конденсатор, появление которого приведет к возникновению незатухающих электромагнитных колебаний, так как колебания не встречают сколь-нибудь заметного сопротивления. Некоторое время стационарность колебаний будет обеспечиваться взаимной компенсацией образования и потерь (рекомбинаций) заряженных частиц в плазме. Если колебания, не затрачивая энергии на преодоление сопротивления, чрезмерно возрастают, то шаровая молния взрывается из-за пробоя конденсатора. В остальных случаях она тихо угасает. Но при этом продолжительность жизни шаровой молнии будет все-таки больше теоретической, на что и указывают их наблюдатели.