Смекни!
smekni.com

Голография и ее применение (стр. 5 из 6)

увеличение безлинзового голографического микроскопа определяется соотношением длин волн и кривизной волновых фронтов, используемых при записи и восстановлении, и может легко регулироваться. Однако при этом получаемые изображения сопровождаются значительными аберрациями, что необходимо учитывать в безлинзовой голографической микроскопии. И именно здесь целесообразно применять методы согласованной фильтрации.

Несомненными преимуществами обладает голографический микроскоп с предварительным увеличением (рис.). Полупрозрачный объект 5 помещают на предметном стекле и освещают расположенным вплотную к нему конденсором 4 светом лазера 1. Объектив микроскопа 6 создает увеличенное действительное изображение объекта, регистрируемое вместе с опорным пучком на голограмме 8, помещаемой между объективом и окуляром 9.


Рис. Схема голографического микроскопа с предварительным увеличением.

Объектив и фокусирующую линзу 10 подбирают так, чтобы обеспечить максимальное совпадение кривизны создаваемых ими волновых фронтов при заданном угле падения на голограмму для уменьшения пространственной частоты регистрируемой интерференционной структуры. Угол между опорными и предметными пучками выбирают достаточно малым из тех же соображений. Восстановленное изображение изучается через окуляр микроскопа, который можно перестраивать по глубине и перемещать по полю зарегистрированного изображения. Подобная схема микроскопа обеспечивает достижение разрешения около 1 мкм.

Можно сравнить две схемы голографического микроскопа. Недостатками схемы прямой регистрации можно назвать высокие требования к разрешающей способности регистрирующей среды и сильное влияние пятнистой структуры на качество изображения. В голографической схеме с использованием микрообъектива для создания увеличенного изображения предмета требования к разрешающей способности минимальны, но поле зрения и глубина регистрируемого пространства определяются свойствами применяемого микрообъектива и весьма малы.

3.Голографические ВЗУ.

1. Голографические запоминающие устройства.

Способность голограмм Фурье хранить информацию успешно реализуется в голографических запоминающих устройствах (ГЗУ). При построении последних стандартным стало использование принципа страничной записи информации в виде матрицы голограмм с их адресацией лучом лазера.

Преимущества оптической памяти состоят в большой емкости (и, соответственно, высокой плотности хранения информации) и высоком быстродействии, возможности параллельной обработки информации, высокой надежности хранения, быстром доступе к массивам информации, отсутствии энергопотребления в статическом состоянии, а главное - большой помехоустойчивости голограмм.

Все ГЗУ можно разделить на следующие основные типы:

- оперативные ГЗУ (на двумерных голограммах и трехмерных с трехкоординатной адресацией);

84

- массовые ГЗУ;

- ГЗУ постоянного типа;

- архивные ГЗУ.

Архивные ГЗУ предназначены для записи и хранения документов без предварительного кодирования. Запись позволяет получить уменьшение документов в 100-200 раз и записать страницу формата 210 × 297 мм в виде фурье-голограммы размером 1-2 мм. На одном носителе записывается около 104 голограмм, но можно довести емкость носителя и до 107. Такие ГЗУ обеспечивают длительное хранение (5-10 лет) без перезаписи, что обусловлено устойчивостью к дефектам носителя, пыли и т.д., а также независимостью от действия внешних электромагнитных и радиационных воздействий. Подобной системой могут оснащаться непосредственно читальные залы крупных библиотек.

Массовые ГЗУ сверхбольшой емкости можно получить, если нанести регистрирующую среду на движущийся носитель типа диска или ленты. В качестве регистрирующей среды для таких систем используют магнитооптические пленки. В ГЗУ с движущимся носителем может быть достигнута высокая плотность записи (порядка 105 бит/мм2), близкая к теоретическому пределу, что на два порядка превышает плотность хранения, достигнутого в ЗУ на магнитных носителях. Емкость таких ГЗУ можно довести до 1013 бит. Чтобы избежать размазывания из-за движения носителя, запись голограмм производится коротким световым импульсом.

Голографические запоминающие устройства постоянного типа (ГЗПУ) не требуют реверсивного регистрирующего материала, обладающего свойством стирания. Наиболее высокое быстродействие среды подобных систем имеют ГПЗУ со страничной организацией и адресуемым лучом. Запись голограмм на носитель информации.

2.Носители информации для голографических ЗУ.

1. Проблемы применения.

Использование лазерной техники для ввода, хранения и выдачи информации в форме объемных изображений позволило создать голографические средства отображения (СО). Объемными изображениями удобно располагать при компьютерном проектировании и производстве, при моделировании сложных объектов, например, летательного аппарата. Такую модель которого можно "прокрутить" на все 360°; при решении уравнений, описывающих трехмерные фигуры (рис.); при наблюдении за поведением живых организмов, клеток, молекул; в устройствах тренажеров для имитации обстановки, максимально приближенной к реальной, при обучении летного состава навыкам пилотирования и в обучающих системах; для тиражирования качественных объемных изображений музейных ценностей; для создания стереоскопических кинофильмов, а также в других специальных приложениях. Богатейшие возможности голографии еще не до конца изучены даже крупнейшими специалистами в этой области.


Рис. Пример результата решения уравнения на ЭВМ в форме пространственного тела.

Дальнейший прогресс в развитии современной вычислительной техники связывают с созданием полностью оптического компьютера, в котором не только обработка информации, но и запись информации и ее считывание осуществляются с помощью лазера. В последние годы интенсивно развиваются различные направления создания голографических ЗУ, использующих оптические методы записи и считывания информации и обеспечивающих высокое быстродействие и произвольный порядок выборки. Объем памяти голографических ЗУ практически неограничен: теоретически достижимая плотность записи с помощью двумерных голограмм 4-108 бит/см2, а с помощью объемных голограмм 4-1012 бит/см3 .

Центральной проблемой создания голографических ЗУ является выбор подходящего материала для создания рабочего регистрирующего слоя носителя информации. Регистрирующая среда для голографических ЗУ должна удовлетворять целому ряду требований, наиболее существенными среди которых являются:

- низкий энергетический порог записи, требующий минимальной плотности энергии записи (от 2-106 Дж/см2 для наиболее распространенных фоточувствительных материалов марки Kodak 649, до 100 Дж/см2 для нелегированного фотополимера типа РММА);

- высокая разрешающая способность;

- высокая дифракционная эффективность, определяемая той частью считывающего опорного луча, которая используется на воспроизведение изображения;

- возможность многократного использования материала для повторных циклов запись-считывание-стирание без существенного ухудшения качества хранимой информации (обратимость материала);

- большая продолжительность хранения информации;

- возможность хранения при отключении питания.

Некоторые из перечисленных требований могут оказаться несовместимыми в применении к конкретной регистрирующей среде.

Регистрация голограмм может быть реализована на целом ряде веществ, в которых происходят различные физические процессы при взаимодействии с лазерным излучением. Наиболее часто используются следующие материалы: аморфные полупроводники, термопластические материалы, магнитные пленки, окислы ванадия, фотохромные материалы, сегнетоэлектрические фотопроводники.

Первые голограммы создавались на обычных фотоносителях, допускавших только однократную запись. Использование серебра в фототехнике повышало стоимость записи информации. В настоящее время наиболее интенсивно исследуются и используются аморфные полупроводники, в частности, халькогенидные полупроводниковые стекла, технология изготовления которых проста и дешева. К ним относятся соединения, содержащие один или несколько халькогенов, к которым относятся сера, селен и теллур. При их взаимодействии с кремнием, германием, висмутом, мышьяком создаются разнообразные аморфные системы -халькогенидные стекла, характеризующиеся тем, что лазерное излучение влияет на их оптические, электрические и структурные параметры. Тонкие слои халькогенидных стекол в виде пленки получают напылением на подложки из слюды или окисных стекол.

2. Воспроизведение голограмм.

Для воспроизведения объемного изображения голограмма помещается под излучение лазера той же длины волны, которая использовалась при записи голограммы. Зеркальный экран освещается потоком опорного света лазера и отраженного от голограммы (рис.). Происходит сложение этих волн, обратное тому сложению, которое производилось при записи голограммы, и на экране возникает объемное изображение объекта. Разумеется, при перемещении оператора по дуге около экрана его глаза не смогут увидеть больше того, что "увидел", т. е. просканировал ранее, лазер - изометрическую проекцию объекта. Однако оператору не потребуется стереоскопических очков, как при использовании стереоскопических установок.