Смекни!
smekni.com

Дисперсия света (стр. 1 из 3)

Содержание

Введение

Глава I. Дисперсия света

1.1. Преломление светового луча в призме

1.2. Открытие явления дисперсии

1.3. Первые опыты с призмами. Представления о при­чинах возникновения цветов до Ньютона.

1.4. Опыты Ньютона с призмами. Ньютоновская теория возникновения цветов

1.5. Открытие аномальной дисперсии света. Опыты Кундта

Глава II. Дисперсия в природе

2.1. Радуга

Глава III. Экспериментальная установка для наблюдения смешения цветов

3.1. Описание установки

3.2. Устройство экспериментальной установки

Заключение

Литература

Введение.

Дисперсия света. Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. Наверное, нет человека, который не любовался бы радугой. Существует старинное английское поверье, согласно которому у подножия радуги можно найти горшок с золотом. На первый взгляд радуга это что-то простое, на самом деле при возникновении радуги происходят сложные физические процессы. Наверное, поэтому я выбрал тему дисперсия света для того, чтобы глубже понять физические процессы и явления, происходящие в природе. Это очень интересная тема и я постараюсь в своей курсовой работе представить все моменты, происходящие в истории развития науки о свете и показать опыты на своей экспериментальной установке, разработанной специально для наблюдения дисперсии света. При конструировании данной установки я опирался на так называемый круг Ньютона, который нужно было приготовить к семинару по физике и понять “принцип работы“ данного устройства. Также необходимо было

1. изучить литературу по этой теме, изучить различные демонстрационные установки, используемые на уроках физики и учитывая условия теоретической и материальной базы,

2. была изготовлена демонстрационная установка для наблюдения сложения цветов, которая впоследствии может быть использована на уроках физики при изучении дисперсии света.

Глава I

Дисперсия света

1.1. Преломление светового луча в призме

Проходя через призму, луч солнечного света не только преломляется, но и разлагается на различные цвета. Рассмотрим преломление луча в приз­ме. Строго говоря, это означает, что световой луч предполагается здесь одно­цветным, или, как принято на­зывать в физике, монохрома­тическим


(от греческих «моно» — один и «хро­мое»— цвет). На рис.1 показан свето­-

N
М

Рис.1

вой луч, проходящий через призму с преломляющим уг­лом q и показателем прелом­ления n; показатель преломле­ния окружающей среды (воз­духа) примем равным единице. Изображенный на рисунке луч падает на левую грань призмы под углом a1.

1.2. Открытие явления дисперсии

Дисперсия света. В яркий солнечный день закроем окно в комнате плотной шторой, в ко­торой сделаем маленькое отверстие. Через это отвер­стие будет проникать в комнату узкий солнечный луч, образующий на противоположной стене светлое пятно. Если на пути луча поставить

Рис. 2.

стеклянную призму, то пятно на стене превратится в разноцветную по­лоску, в которой будут представлены все цвета ра­дуги—от фиолетового до красного (рис. 2: Ф – фиолетовый, С — синий, Г — голубой, 3 — зеленый, Ж —желтый, О —оранжевый, К — красный).

Дисперсия света зависимость показателя преломления n вещества от частоты f (длины волны l) света или зависимость фазовой скорости световых волн от частоты. Следствие дисперсии света - разложение в спектр пучка белого света при прохождении сквозь призму. Изучение этого спектра привело И. Ньютона (1672) к открытию дисперсии света. Для веществ, прозрачных в данной области спектра, n увеличивается с увеличением f (уменьшением l), чему и соответствует распределение цветов в спектре, такая зависимость n от f называется нормальной дисперсией света. Разноцветная полоска на рис. 2 есть солнечный спектр.

1.3. Первые опыты с призмами. Представления о при­чинах возникновения цветов до Ньютона

Описанный опыт является, по сути дела, древним. Уже в I в. н. э. было известно, что большие монокристаллы (шестиугольные призмы, изготовленные самой приро­дой) обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой выполнил англича­нин Хариот (1560—1621). Независимо от него анало­гичные опыты проделал известный чешский естество­испытатель Марци (1595 — 1667), который установил, что каждому цвету соответствует свой угол прелом­ления. Однако до Ньютона подобные наблюдения не подвергались достаточно серьезному анализу, а де­лавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. В результате в науке тех времен долго господствовали представления, неправильно объяснявшие возникновение цветов.

Говоря об этих представлениях, следует начать с теории цветов Аристотеля (IV в. до н. э.). Аристо­тель утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к солнечному (белому) свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный — при наименьшем. Та­ким образом, цвета радуги — это сложные цвета, а основным является белый свет. Интересно, что появ­ление стеклянных призм и первые опыты по наблю­дению разложения света призмами не породили со­мнений в правильности аристотелевой теории возникновения цветов. И Хариот, и Марци оставались по­следователями этой теории. Этому не следует удив­ляться, так как на первый взгляд разложение света призмой на различные цвета, казалось бы, подтверж­дало представления о возникновении цвета в резуль­тате смешения света и темноты. Радужная полоска возникает как раз на переходе от теневой полосы к освещенной, т. е. на границе темноты и белого света. Из того факта, что фиолетовый луч проходит внутри призмы наибольший путь по сравнению с другими цветными лучами, не­мудрено сделать вывод, что фиолетовый цвет возни­кает при наибольшей утрате белым светом своей «белизны» при прохождении через призму. Иначе го­воря, на наибольшем пути происходит и наибольшее примешивание темноты к белому свету.

Ложность подобных выводов нетрудно было дока­зать, поставив соответствующие опыты с теми же призмами. Однако до Ньютона никто этого не сде­лал.

1.4. Опыты Ньютона с призмами. Ньютоновская теория возникновения цветов

Великий английский ученый Исаак Ньютон выполнил целый комплекс оптических экспериментов с призмами, подробно описав их в «Оптике», «Новой теории света и цветов», а также в «Лекциях по оптике». Ньютон убедительно доказал ложность представлений о возникновении цветов из смешения темноты и белого света. На основании про­деланных опытов он смог заявить: «Никакого цвета не возникает из белизны и черноты, смешанных вме­сте, кроме промежуточных темных; количество света не меняет вида цвета». Ньютон показал, что белый свет не является основным, его надо рассматривать как составной (по Ньютону, «неоднородный»; по со­временной терминологии, «немонохроматический»); основными же являются различные цвета («однород­ные» лучи или, иначе, «монохроматические» лучи). Возникновение цветов в опытах с призмами есть ре­зультат разложения составного (белого) света на основные составляющие (на различные цвета). Это разложение происходит по той причине, что каждому цвету соответствует своя степень преломляемости. Таковы основные выводы, сделанные Ньютоном; они прекрасно согласуются с современными научными представлениями.

Выполненные Ньютоном оптические исследования представляют большой интерес не только с точки зре­ния полученных результатов, но также и с методиче­ской точки зрения. Разработанная Ньютоном мето­дика исследований с призмами (в частности, метод скрещенных призм) пережила века и вошла в арсе­нал современной физики.

Приступая к оптическим исследованиям, Ньютон ставил перед собой задачу «не объяснять свойства света гипотезами, но изложить и доказать их рассуж­дениями и опытами». Проверяя то или иное положе­ние, ученый обычно придумывал и ставил несколько различных опытов. Он подчеркивал, что необходимо использовать разные способы «проверить то же са­мое, ибо испытующему обилие не мешает».

Рассмотрим некоторые наиболее интересные опы­ты Ньютона с призмами и те выводы, к которым при­шел ученый на основании полученных результатов. Большая группа опытов была посвящена проверке соответствия между цветом лучей и степенью их пре­ломляемости (иначе говоря, между цветом и величи­ной показателя преломления). Выделим три таких опыта.

Опыт 1. Прохождение света через скрещенные призмы. Перед отверстием А, пропускающим в затем­ненную комнату узкий пучок солнечных лучей, поме­щают призму с горизонтально ориентированным пре­ломляющим ребром (рис. 4.3,а).

На экране возни­кает вытянутая по вертикали цветная полоска КФ, крайняя нижняя часть которой окрашена в красный цвет, а крайняя верхняя — в фиолетовый. Обведем карандашом контуры полоски на экране. Затем поместим между рассматриваемой призмой я экраном еще одну такую же призму, но при этом преломляю­щее ребро второй призмы должно быть ориентиро­вано вертикально, т. е. перпендикулярно к прелом­ляющему ребру первой призмы. Световой пучок, вы­ходящий из отверстия А, проходит последовательно через две скрещенные призмы. На экране возникает полоска спектра К'Ф', смещенная относительно кон­тура КФ по оси Х. При этом фиолетовый конец поло­ски оказывается смещенным в большей мере, нежели красный, так что полоска спектра выглядит наклонен­ной к вертикали. Ньютон приходит к выводу: если опыт с одиночной призмой позволяет утверждать, что лучам с разной степенью преломляемости соответ­ствуют разные цвета, то опыт со скрещенными призма­ми доказывает также и обратное положение — лучи разного цвета обладают разной степенью преломляе­мости. Действительно, луч, наиболее преломляющийся в первой призме, есть фиолетовый луч; проходя затем через вторую призму, этот фиолетовый луч испыты­вает наибольшее преломление. Обсуждая результаты опыта со скрещенными призмами, Ньютон отмечал: «Из этого опыта следует также, что преломления отдельных лучей протекают по тем же законам, находят­ся ли они в смеси с лучами других родов, как в белом свете, или преломляются порознь или предваритель­ном обращении света в цвета».