Смекни!
smekni.com

Измерение постоянных токов (стр. 2 из 4)

Многие гальванометры снабжают магнитным шунтом. Регули­руя положение шунта посредством выведенной наружу ручки, можно менять значение магнитной индукции в рабочем зазоре. При этом изменяется постоянная, а также ряд других параметров гальвано­метра. По требованию стандарта, магнитный шунт должен изменять постоянную по току не менее чем в 3 раза. В паспорте гальванометра и в его маркировке указывают значения постоянной при двух край­них положениях шунта — полностью введенном и полностью вы­веденном.

Гальванометр должен иметь корректор, перемещающий при круговом вращении указатель в ту или другую сторону от нулевой отметки. Гальванометры с подвижной частью на подвесе должны быть снабжены арретиром (приспособлением для механической фиксации подвижной части), который включают, например, при переноске прибора.

Гальванометры ввиду высокой чувствительности необходимо защищать от помех. Так, от механических сотрясений гальвано­метры защищают, устанавливая их на капитальные стены или спе­циальные фундаменты; от токов утечек — электростатическим экранированием и т. п.

Характер движения подвижной части гальванометра при изме­нении измеряемой величины зависит от его успокоения, которое определяется сопротивлением внешней цепи. Для удобства работы с гальванометром это сопротивление подбирают близким к так называемому внешнему критическому сопротивлению Rк, указанному в паспорте гальванометра. Если гальванометр замкнут на внеш­нее критическое сопротивление, то указатель плавно и за минималь­ное время подходит к положению равновесия, не переходит его и не совершает около него колебаний (см. § 3.10).

Баллистический гальванометр позволяет измерять малые коли­чества электричества (импульс тока), протекающие в течение корот­ких промежутков времени — долей секунды. Таким образом, баллистический гальванометр предназначен для импульсных из­мерений. Теория баллистического гальванометра (см. § 3.10) пока­зывает, что если принять допущение о том, что подвижная часть начинает свое движение после окончания импульса тока в обмотке подвижной рамки, то количество электричества Q, протекшее в цепи, пропорционально первому максимальному отклонению указателя alm, т. е.

Q = C6a1m, (3.36)

где Сб — баллистическая постоянная гальванометра, выражаемая в кулонах на деление.

Следует отметить, что Сб не остается неизменной для данного гальванометра, а зависит от сопротивления внешней цепи, что требует обычно ее определения в процессе измерений опытным путем.

Указанное выше допущение выполняется тем точнее, чем больше момент инерции подвижной части гальванометра и, следовательно, больше период свободных колебаний Т0. Для баллистических галь­ванометров Т0составляет десятки секунд (для обычных гальвано-,метров — единицы секунд). Это достигается увеличением момента {инерции подвижной части гальванометра с помощью дополнитель-|ной детали в виде диска.

Магнитоэлектрические измерительные механизмы. В магнито­электрических измерительных механизмах вращающий момент со­здается в результате взаимодействия магнитного поля постоянного магнита и магнитного поля 'проводника с током, выполняемого обычно в виде катушки — рамки.

Обратимся к рассмотрению принципа действия магнитоэлектри­ческих измерительных механизмов.

На рис. 3.1 показана подвижная рамка измерительного меха­низма, находящаяся в равномерном радиальном магнитном поле. При протекании по обмотке рамки тока возникают силы F, стре­мящиеся повернуть рамку так, чтобы ее плоскость стала перпенди­кулярной к направлению Ох — 02. При равенстве вращающего и противодействующего моментов подвижная часть останавли­вается.

Для получения зависимости между углом отклонения и током в рамке обратимся к уравнению (3.1), которое применительно к на­шему случаю представляется так:

(3.5) где Ф — поток, сцепляющийся с обмоткой рамки; I — ток в обмотке рамки.

Величина Ф может быть подсчитана как произведение индукции В в воздушном зазоре, числа витков w обмотки рамки и суммы площадей двух боковых поверхностей, опи­санных активными сторонами подвиж­ной катушки при ее повороте на угол а я от нейтрального положения (оси О1O2).

В соответствии с рис. 3.1 активными сторонами обмотки рамки будут являть­ся стороны, расположенные в плоско­сти, перпендикулярной рисунку. Сто­роны рамки, находящиеся в плоскости рисунка, при своем движении скользят

вдоль силовых линий, не пересекая их, и поэтому не будут участ­вовать в создании вращающего момента. Следовательно,

Ф = B2rlwa,

где rрадиус рамки относительно оси вращения; / — длина рамки; а — угол отклонения рамки от нейтрального положения. Обозначив площадь катушки через s, можем написать

Ф = Bswa.

Подставляя это выражение в формулу (3.5) и дифференцируя его, получим

(3.6)

Так как противодействующий момент создается упругими эле­ментами, то можно воспользоваться формулой (3.2) и для режима установившегося отклонения написать

откуда

(3.7)

Как видно из выражения (3.7), при перемене направления тока в обмотке рамки меняется на обратное и направление отклонения подвижной части.

Для получения отклонения указателя в нужную сторону необ­ходимо при включении прибора соблюдать указанную на приборе полярность.

Из выражения (3.7) и определения понятия чувствительности следует, что для магнитоэлектрических измерительных механизмов и, следовательно, для магнитоэлектрических приборов чувствитель­ность

(3.8)

Из уравнения (3.8) видно, что чувствительность магнитоэлектри­ческого прибора не зависит от угла отклонения и постоянна по всей шкале; отсюда следует, что магнитоэлектрические приборы имеют равномерную шкалу. Это позволяет выпускать их комбинирован­ными и многопредельными.

Магнитоэлектрические приборы относятся к числу наиболее точных. Они изготовляются вплоть до класса точности 0,1. Высокая точность этих приборов объясняется рядом причин. Наличие равно­мерной шкалы уменьшает погрешности градуировки и отсчета. Благодаря сильному собственному магнитному полю влияние по­сторонних полей на показания приборов весьма незначительно. Внешние электрические поля на работу приборов практически не влияют. Температурные погрешности могут быть скомпенсированы с помощью специальных схем.

Большим достоинством магнитоэлектрических приборов яв­ляется высокая чувствительность. В этом отношении магнитоэлек­трические приборы не имеют себе равных. Известны магнитоэлек­трические микроамперметры с током полного отклонения 0,1 мкА (например, типа М95, класса точности 1,0).

Благодаря этим достоинствам магнитоэлектрические приборы применяют с различными преобразователями переменного тока в постоянный для измерений в цепях переменного тока.

К недостаткам магнитоэлектрических приборов следует отнести несколько более сложную и дорогую конструкцию, чем, например, конструкция электромагнитных приборов, невысокую перегрузоч­ную способность (при перегрузке обычно перегорают токоподводя-щие пружинки или растяжки для создания противодействующего момента) и, самое главное, отмеченную выше возможность приме­нения в качестве амперметров и вольтметров лишь для измерений в цепях постоянного тока (при отсутствии преобразователей).

Магнитоэлектрические измерительные механизмы с механи­ческим противодействующим моментом используются главным образом в амперметрах, вольтметрах и гальванометрах, а также в не­которых типах омметров.

Рассмотрим особенности устройства измерительных механизмов магнитоэлектрических логометров.

Как было указано выше, в логометрах противодействующий момент создается не механическим путем, а электрическим. Для этого в магнитоэлектрическом логометре (рис. 3.2) подвижная часть выполняется в виде двух жестко скрепленных между собой рамок 1 и 2, по обмоткам кото­рых протекают токи I1 и I2. Пружинки для создания механического противодействующего момента не ставятся, а ток к обмоткам подво­дится с помощью безмоментных токопр ово­дов, выполняемых в виде тонких неупругих металлических ленточек.

Направления токов в обмотках выбира­ются так, чтобы моменты Мх и М2, создавае­мые рамками, действовали навстречу друг другу. Один из моментов вращающий, а вто­рой — противодействующий. Хотя бы один из моментов должен зависеть от угла поворота. Значит, один (или несколько) из параметров, определяющих значение момента, должен являться функцией угла а. Технически наиболее просто сделать зависящей от угла поворота индукцию Л. Для этого магнитное поле в зазоре должно быть неравномерным, что дости­гается неравномерностью зазора (с этой целью сердечник на рис. 3.2 сделан эллипсоидальным).

В общем виде выражения для моментов М1 и М2могут быть записаны так:

где

и
— функции, выражающие закон изменения индукции для рамок 1и 2 при перемещении их в зазоре. При установившемся равновесии моменты М1 и М2равны, т. е.