Смекни!
smekni.com

КОМПЬЮТЕРНЫЕ МОДЕЛИ в ФИЗИКЕ (стр. 1 из 5)

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ ПЕДАГОГИЧЕСКИЙ

УНИВЕРСИТЕТ Им. М.А. Шолохова

КУРСОВАЯ РАБОТА ПО ТЕМЕ:

«МЕТОДИКА ИСПОЛЬЗОВАНИЯ КОМПЮТЕРНЫХ МОДЕЛЕЙ НА ПРИМЕРЕ КУРСА КВАНТОВОЙ ФИЗИКИ В 11 КЛАССЕ»

СУВОРОВ АЛЕКСАНДР ВЛАДИМИРОВИЧ

4КУРС ФИЗ-МАТ фак.

Гр. ФИЗИКА

МОСКВА 2001

План курсовой:

Введение 3 Компьютерный модели в школьном курсе физики 5

Методика применения компьютерных моделей в школьном курсе физики. 8

Как начинать работать с компьютерным курсом. 10

Как проводить первые уроки в компьютерном классе. 10

Компьютерные модели для курса

«Квантовая физика 11 класс» 12

Заключение 19

Список литературы и сайтов 21

Введение

Важнейшей задачей школы, в том числе и преподавания физики, является формирование личности, способной ориентироваться в потоке информации в условиях непрерывного образования. Осознание общечеловеческих ценностей возможно только при соответствующем познавательном, нравственном, этическом и эстетическом воспитании личности. В связи с этим первую цепь можно конкретизировать более частными целями: воспитание у школьников в процессе деятельности положительного отношения к науке вообще и к физике в частности; развитие интереса к физическим знаниям, научно - популярным статьям, жизненным проблемам. Физика является основой естествознания и современного научно - технического прогресса, что определяет следующие конкретные цели обучения: осознание учащимися роли физики в науке и производстве, воспитание экологической культуры, понимание нравственных и этических проблем, связанных с физикой.

Квантовую физику изучают в конце школьного курса физики, причем изучают впервые. Нигде на протяжении всего школьного курса физики учащиеся не встречались с дуализмом свойств ча­стиц, вещества и поля, с дискретностью энергии, со свойствами ядра атома, с элементарными частицами. Лишь о строении атома школьники получили самые первоначальные представления в кур­се физики VIII класса и более полные—в курсе химии IX класса. Это обстоятельство требует от учителя так построить учебный процесс, чтобы при первичном изучении материала добиваться глубокого и прочного усвоения его учащимися. Необходима про­думанная работа по закреплению и применению изучаемого ма­териала при решении задач, выполнении лабораторных работ, работе с дидактическим материалом и т. д. Пониманию и усвое­нию раздела способствуют оценочные расчеты, например, волн де Бройля, связанных с различными объектами, размера ядра, его плотности, энергии связи и т. п.

Для повышения качества усвоения материала очень важно опираться на ранее полученные знания. Например, при изучении правил смещения при радиоактивном распаде и при изучении ядерных реакций необходимо широко опираться на законы сохра­нения массы и заряда. Перед изучением строения атома целесо­образно повторить понятие центростремительного ускорения, за­коны Ньютона, закон Кулона, а также те сведения о строении атома, которые учащиеся получили в VIII классе на уроках физи­ки и в IX классе при изучении химии.

Особенность содержания квантовой физики также накладыва­ет отпечаток на методику ее изучения. В этом разделе учащихся знакомят со своеобразием свойств и закономерностей микромира, которые противоречат многим представлениям классической фи­зики. От школьников для его усвоения требуется не просто вы­сокий уровень абстрактного, но и диалектическое мышление. Противоречия волна—частица, дискретность—непрерывность рассматривают с позиций диалектического материализма. Поэтому при изучении этого раздела учителю важно опираться на те фи­лософские знания, которые получили учащиеся в курсе общество­ведения, чаще напоминать им, что метафизическому противопо­ставлению (либо да, либо нет) диалектика противопоставляет утверждение: и да, и нет (в одних конкретных условиях—да, в других—нет). Поэтому нет ничего удивительного в том, что свет в одних условиях (интерференции, дифракции) ведет себя как волна, в других—как поток частиц.

Для облегчения усвоения квантовой физики необходимо в учеб­ном процессе широко использовать различные средства наглядно­сти. Но число демонстрационных опытов, которые можно поста­вить при изучении этого раздела, в средней школе очень невелико. Поэтому, кроме эксперимента, широко используют рисунки, чер­тежи, графики, фотографии треков, плакаты, диапозитивы и компьютерные модели. Преж­де всего необходимо иллюстрировать фундаментальные опыты (опыт Резерфорда по рассеянию а-частиц, опыты Франка и Герца и др.), а также разъяснять принцип устройства приборов, регист­рирующих частицы, ускорителей, атомного реактора, атомной электростанции и т. п. При изучении этого раздела широко ис­пользуют учебные кинофильмы «Фотоэффект», «Фотоэлементы и их применение», «Давление света», «Радиоактивность и атомное ядро», «Ядерная энергетика в мирных целях», кинофрагменты «Дискретность энергетических уровней атома (опыт Франка — Герца)», «Природа линейчатых спектров атомов водорода», диа­фильмы «Трековые приборы в ядерной физике», «Ускорители за­ряженных частиц», «Этот мирный добрый атом», «Строение атома и атомного ядра», а также диапозитивы «Атомное ядро» и настен­ные таблицы («Атомная электростанция» и др.).

Одним из наиболее перспективных направлений использования информационных технологий в физическом образовании является компьютерное моделирование физических явлений и процессов. Компьютерные модели легко вписываются в традиционный урок, позволяя учителю продемонстрировать на экране компьютера многие физические эффекты, а также позволяют организовывать новые, нетрадиционные виды учебной деятельности учащихся. В этой курсовой работе мы будим использовать как пример компьютерный курс «Открытая физика 1.0».

Компьютерный курс "Открытая физика 1.0" прошёл сертификацию в Институте информатизации образования Министерства образования России, он соответствует программе курса физики для общеобразовательных учреждений России и рекомендован Министерством образования России в качестве учебного пособия для средних школ.

Данный курс является мощным средством интенсификации занятий и повышения интереса учащихся к физике и рекомендуется учащимся средних школ, техникумов, лицеев, колледжей, студентам не физических специальностей, лицам, самостоятельно изучающим физику, а также абитуриентам и преподавателям. Учебный компьютерный курс "Открытая физика1.0, часть I" содержит в виде отдельных модулей огромное количество интерактивных компьютерных моделей, которые позволяют наблюдать на экране компьютера симуляции физических экспериментов, десятки видеозаписей натурных экспериментов и 1 час звуковых пояснений в виде фрагментов лекций, которые читает научный руководитель проекта С. М. Козел.

Компьютерные модели позволяют пользователю управлять поведением объектов на экране монитора, изменяя начальные условия экспериментов, и проводить разнообразные физические опыты. Некоторые модели позволяют наблюдать на экране монитора, одновременно с ходом эксперимента, построение графических зависимостей от времени ряда физических величин, описывающих эксперимент. Видеозаписи натурных экспериментов делают курс более привлекательным и позволяют сделать занятия живыми и интересными. Особо подчеркнём, что к каждой компьютерной модели и к каждому видеофрагменту даны пояснения физики наблюдаемых экспериментов и явлений. Эти пояснения можно не только прочитать на экране дисплея и при необходимости распечатать, но и прослушать, если ваш компьютер укомплектован звуковой картой.

Рис. 1 Общий вид программы с открытой моделью «Лазер: двухуровневая модель»,задачей на эту тему и теорией по теме.

Компьютерный курс назван "Открытой физикой", так как его модульный состав даёт большую свободу в выборе компьютерных моделей и соответствующих экспериментов. В дальнейшем предполагается разработка открытых версий на основе новейших компьютерных технологий. Это позволит создавать открытые образовательные продукты для сети Internet и дистанционного образования. В перспективе учитель сможет менять наполнение курса в зависимости от своих целей, создавать собственные пояснения и задания к компьютерным моделям, сохранять начальные условия запланированных экспериментов, вводить в курс новые задачи и вопросы.

Компьютерный модели в школьном курсе физики

В настоящее время количество компьютерных программ, предназначенных для изучения физики, исчисляется десятками, только лазерных дисков выпущено более десяти. Эти программы уже можно классифицировать в зависимости от вида их использования на уроках :

- обучающие программы;

- демонстрационные программы;

- компьютерные модели;

- компьютерные лаборатории;

- лабораторные работы;

- пакеты задач;

- контролирующие программы;

- компьютерные дидактические материалы.

Разумеется, приведённая классификация является достаточно условной, так как многие программы включают в себя элементы двух или более видов программных средств, тем не менее, она полезна тем, что помогает учителю понять, какой вид деятельности учащихся можно организовать, используя ту или иную программу.

Когда же следует использовать компьютерные программы на уроках физики? Прежде всего, необходимо осознавать, что применение компьютерных технологий в образовании оправдано только в тех случаях, в которых возникает существенное преимущество по сравнению с традиционными формами обучения. Одним из таких случаев является преподавание физики с использование компьютерных моделей. Следует отметить, что под компьютерными моделями автор понимает компьютерные программы, имитирующие физические опыты, явления или идеализированные модельные ситуации, встречающиеся в физических задачах. Компьютерные модели позволяют получать в динамике наглядные запоминающиеся иллюстрации физических экспериментов и явлений, воспроизвести их тонкие детали, которые могут ускользать при наблюдении реальных экспериментов . Компьютерное моделирование позволяет изменять временной масштаб, варьировать в широких пределах параметры и условия экспериментов, а также моделировать ситуации, недоступные в реальных экспериментах. Некоторые модели позволяют выводить на экран графики временной зависимости величин, описывающих эксперименты, причём графики выводятся на экран одновременно с отображением самих экспериментов, что придаёт им особую наглядность и облегчает понимание общих закономерностей изучаемых процессов. В этом случае графический способ отображения результатов моделирования облегчает усвоение больших объёмов получаемой информации.