Смекни!
smekni.com

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ (МЕХАНИКА И ТЕРМОДИНАМИКА) (стр. 11 из 12)

При включении прибора в сеть и нажатии клавиши "Сеть" заго­рается цифровой индикатор. Для установки нулевых показаний необ­ходимо сбросить измерительную схему нажатием клавиши "Сброс". Управление электромагнитом осуществляется клавишей "Пуск". При от­жатой клавише "Пуск" включается электромагнит и шар, отведенный к магниту, удерживается в отклоненном положении. В этом положении по шкале измеряется начальный угол @@ отклонения нити от вертикального положения. При нажатии клавиши "Пуск", электромагнит отключается, шар под действием силы тяжести начинает перемещаться и, сталкиваясь с покоящимся шаром, вызывает его смещение. При этом нить второго шара отклоняется на угол @@, а первого на угол @@, величины которых зависят от упругих свойств материа­лов шаров. При столкновении шара с неподвижной стенкой, установ­ленной вместо покоящегося шара, нить правого шара отклоняется на угол @@1.

Порядок выполнения работы

Измерение времени взаимодействия шаров и углов α, β, γ, γ1.

1) Измерить расстояния R от точки подвеса до центра даров и при необходимости отрегулировать их; эти расстояния должны быть равны. Массы шаров указаны на установке.

2) Включить источник питания нажатием клавиши "Сеть".

3) Отжать клавишу "Пуск" и отвести правый шар к электромаг­ниту, измерить угол первоначального отклонения нити α от вер­тикального положения.

4) Нажать клавишу "Сброс".

5) Нажать клавишу "Пуск". Измерить углы максимальных отклонений от вертикального положения нитей левого шара β и правого γ после их взаимодействия. Зафиксировать по микросекундо­меру время взаимодействия шаров. Измерения повторить 3-5 раз и по­дученные данные занести в таблицу.

6) Используя пары с различными упругими свойствами, выполнить исследования в соответствии с пп.1-5.

7) Заменить левый шар неподвижной стенкой и в соответствии с пп.3)-6) определить максимальный угол отклонения нити γ1 правого шара от вертикального положения после его взаимодействия со стенкой. Данные занести в таблицу.

Определение скоростей шаров

При абсолютно упругом столкновении шара массой m1, который двигаетcя со скоростью V1, с шаром массой m2, который дви­гается со скоростью V2 (V2<V1,рис.25), поверхности их де­формируются, но этот процесс обратим, так как форма шаров мгно­венно восстанавливается, а энергия деформации без потерь превра­щается в кинетическую энергию движения шаров.

После удара шары будут двигаться с измененными скоростями U1 и U2, определить которые можно с помощью законов сохранения кинетической энергии

и сохранения импульса (количества движения)

m1V1+m2V2=m1U1+m2U2, (109)

После несложных преобразований находят скорости шаров после удара

Если происходит встречный центральный абсолютно упругий удар (скорости шаров до удара имеют противоположные знаки), то необхо­димо учитывать знак скорости при вычислении соответствующих вели­чин в выражениях (110), (111). При равенстве масс шаров (т1 = т2 = т) из (110) и (111) следует

U1=V2, U2=V1, (112)

т.е. первый шар приобрел после удара скорость, равную скорости второго шара, и наоборот. Если до столкновения один из шаров (на­пример, второй) покоился (V2 = 0), то U1 = 0; U2 = V1).

После абсолютно неупругого удара тела совершают совместное движение (рис. 26), а кинетическая энергия соударяющихся тел час­тично переходит в другие виды энергии и тела приобретают остаточ­ную деформацию. При этом закон сохранения механической энергии системы не выполняется. Скорость U' после удара, как известно, можно определить, используя закон сохранения импульса и считая, что внешние силы отсутствуют, а масса системы после удара - т1+ т2:

Если первоначально тело было поднято на высоту h1, то в момент удара его кинетическая энергия равна исходной потенциальной энергии (рис. 27):

.

Скорости шаров после взаимодействия можно определить из условий

где h2 и h3 - высота подъемов второго и первого шара после взаимодействия.

Из этих соотношений следует

1) По измеренному значению угла α начального отклонения правого шара вычислить по формулам (114) и (116) его скорость U1 при прохождении им положения равновесия.

2) Определить теоретические значения скоростей шаров после взаимодействия для случаев абсолютно упругого удара (формулы (110), (111) и абсолютно неупругого удара (формула (113)).

3) По измеренным углам отклонения шаров после их взаимодействия (β и γ) вычислить по формулам (115), (116) действительные зна­чения скоростей шаров.

4) Сравнить теоретические и экспериментальные значения скорос­тей, дать объяснение полученным результатам.

Определение работы деформации при ударе шаров

При неупругом ударе часть механической анергии тел переходит в другие формы энергии (например, тепловую) и затрачивается на ра­боту о статочной, деформации поверхности шаров. В этом случае полная энергия системы не изменяется, кинетическая энергия шаров после удара будет меньше, чем до удара.

Уменьшение механической энергии системы ∆W с достаточной степенью точности можно считать равным работе сил, создающих ос­таточную деформацию.

По закону сохранения энергии при столкновении реальных тел следует учесть работу деформации тел A, т.е. ту часть общей энергии, которая необратимо расходуется на совершение невосстанавливающейся деформации и преобразуется в энергию теплового движения молекул вещества:

Это уравнение позволяет определить работу деформации шаров равных масс (m1 = m2 = m), закрепленных на нерастяжимых нитях длины R. Если второй шар покоится (V2 = 0), а первый - отклонен на угол α от вертикального положения (рис. 27), то (117) преобразуется к виду:

A=∆W=mg(h1-h2-h3), (118)

где h2 и h3 - высота подъема второго и первого шара после удара. С учетом (116)

A=mgR(cosβ+cosγ-cosα-1), (119)

1) Вычислить кинетическую энергию шара в момент удара по из­меренному значению угла α первоначального отклонения первого шара.

2) По измеренным значениям углов α, β и γ и длины подвеса шаров R вычислить по формуле (119) изменение механи­ческой энергии системы - работу деформации.

Определение коэффициента восстановления тел при ударе

Степень "неупругости" удара определяется отношением нормальных составляющих скоростей тела после его удара о неподвижную стенку Un (после удара) и V1 (до удара). Это отношение называ­ется коэффициентом восстановления:

В качестве неподвижной стенки можно использовать шар доста­точно большой массы или любое плоское массивное тело. С учетом, что

где h3 - высота подъема шара после его удара о массивную не­подвижную стенку, коэффициент восстановления