де Nа, Nд - концентрація акцепторів і донорів
a - коефіцієнт, що дорівнює 1.
У даній задачі проводитися розкладання повного струму через діод у ряд Фур'є, що дозволяє точно визначити потужність діода змінного сигналу, що визначається підвідною потужністю і параметричним посиленням вхідного сигналу. Крім того для визначення вихідної потужності проводитися розкладання струму в вихідному навантаженні в ряд Фур'є. Це дозволяє визначити потужність усіх гармонійних складових у спектрі вихідного сигналу. Слід зазначити, що для ЛПД вірніше було б задавати струм через діод і знаходити при цьому напругу на клемах діоду. Проте, як показали попередні розрахунки, у цьому випадку виникають істотні складності при обчислювальні. Тому була обрана схема розрахунку заданої напруги. Запис вихідних рівнянь припускає такі основні нормування:
де V1, V2, E1, t, n, p - ненормовані значення швидкості, напруженості електричного поля, часу і густини рухливих зарядів відповідно, причому передбачається
що дозволяє виключити коефіцієнт в рівнянні Пуассона. У розрахунках задаються такі параметри:Vн1=
см/с;Vн2=
см/с;Оскільки невідомі достатньо достовірні дані про розмір коефіцієнтів дифузії в сильних полях , то коефіцієнтах дифузії дірок і електронів можна вважати одинаковими:
D1=15 см2/с;
D2=15 см2/с;
Двопролітні діоди характеризуються великим значенням активної складової імпедансу і меншим значенням реактивної складової, що дозволяє працювати при великих значеннях омічного опору контакту і полегшує узгодження з електродинамічною системою. Пропонувалося, що легування донорами по всієї довжині однакове, а в р-області легування акцепторами в два рази більше легування донорами, а на p-n переході воно стає рівним нулю. Довжина переходу складала чверть довжини кристала, а p- і n- області рівні між собою. Така структура була обрана внаслідок того, що контактні розрахунки діодів, у яких відношення довжин р- і n- областей пропорційно відношенню швидкостей дірок і електронів, не показали помітного покращення в ККД у порівнянні з діодами з однаковими довжинами р- і n- областей.
Розрахунки проводилися за допомогою програми, написаної на мові програмування «Pascal».
У даній роботі розрахунки проводились при таких параметрах: вхідна частота fВХ=6.5 ГГц, а вихідна частота fВИХ=100 ГГц; довжина діода L=0.72 мкм; легування акцепторів у лівій половині діода NA=1.85×1017 см-3 , а легування донорами по всієї довжині кристалу NД=0.92×1017 см-3; омічний опір контактів діода RS=0.9×10-5 Ом×см2 . Ми одержали такі значення цих параметрів, при яких спостерігається помноження: V0=24 В, V1=12 В, V2=6 В; L1=6.9×10-17 Гн×см2, С1=3.36×10-8 Ф/см2, R1=2.35×10-4 Ом×см2 (контур, настроєний на вихідну частоту); L2=8.25×10-17 Гн×см2, С2=6.3×10-8 Ф/см2, R2=2.65×10-3 Ом×см2 (контур, настроєний на другу субгармоніку вихідної частоти); L3=1.57×10-15 Гн×см2, С3=3.8×10-7 Ф/см2, R3=5.9×10-3 Ом×см2 (контур, настроєний на вхідну частоту).
При даних параметрах ми одержали наступні результати: середній струм через діод складає 7.4×104 А/см2, потужність змінного сигналу дорівнює 105 Вт/см2, потужність 15-ой гармоніки в навантаженні вихідного контуру дорівнює 1.9×103 Вт/см2. Цим даним відповідають графіки, приведені на мал.2.4. Втрати потужності на помноження складають 19 дБ. При подальшому зменшенні R1 втрати потужності на помноження зростають і при R1=4.72×10-5 Ом×см2 вони складають 24 дБ. Графіки преведені на мал.2.5. Можна сказати, що при даному значенні R1 помноження ще не відбувається. При збільшенні R1 відбувається змикання, тобто ми маємо ситуацію коли коливання у вихідному контурі ще не загаснули, а вже надходить наступний імпульс струму. У цьому випадку немає синхронізації вихідного сигналу вхідним відносно низькочастотного сигналу. Це відображається на мал.2.6.
Планується дослідження залежностей параметрів помножувача в залежності від R2 та R3.
Висновки
У ході передипломної практики було проведено математичне моделювання роботи помножувача частоти великої кратності на основі ЛПД із метою одержання високостабільних коливань у короткохвильовій частині міліметрового діапазону хвиль. Досліджувався вплив зовнішньої електро-динамічної системи на вихідні характеристики помножувача.
Попередні розрахунки показали можливість використання ЛПД у якості помножувача частоти великої кратності, що дозволяє одержати, практично зі зберіганням спектру вхідного сигналу, помноження в 15 разів з втратами потужності порядку 19 дБ.
Отримано помноження частоти в 15 разів (
) і при цьому втрати на помноження складають 24 дБ при , де - опір у вихідному контурі. При збільшенні до мінімальні втрати на помноження зменшуються і складають 19 дБ.При подальшому збільшенні R1 відбувається змикання, тобто ми маємо ситуацію коли коливання у вихідному контурі ще не згаснули, а вже надходить наступний імпульс струму. У цьому випадку немає синхронізації вихідного сигналу вхідним відносно низькочастотного сигналу.
1.Пильдон В.И. Полупроводниковые умножительные диоды . - М. : Радио и
связь, 1981.-136.,ил.
2.Красноголовый Б.Н. Плавский Н.Г. Варакторные умножители частоты. –
Минск: Изд-во Белорус. ун-та им. В.И.Ленина, 1979, с. 287.
3.Давыдова Н.С. Данюшевский Ю.З. Диодные генераторы и усилители
СВЧ . -М. : Радио и связь, 1986. - 184 с., ил.
4.Полупроводниковые приборы в схемах СВЧ / Под ред. М. Хауэса,
Д. Моргана. - М. : Мир, 1979. – 448 с.
5.Белоусов Н. П. Гудзь И. А. Новожилов В. В. Чайка В. Е. Исследование
характеристик кремниевых ЛПД в коротковолновой части миллиметрового диапазона – Электронная техника, Серия 1, Электроника СВЧ, Выпуск 2, 1979г.
Додаток
Мал. 2.4.
Мал. 2.5.
Мал. 2.6.