Как уже упоминалось, стационарный эффект Джозефсона состоит в том, что достаточно слабый ток I (меньший критического тока слабой связи Ic) протекает без сопротивления, то есть на ней не происходит падения напряжения. Джозефсон получил следующее выражение для тока I:
где
Через год после предсказания Джозефсона этот эффект проверил прямым экспериментом Дж. Роуэлл. В туннельных экспериментах такого рода, когда диэлектрическая прослойка очень тонка, основная трудность состоит в устранении контакта металлических обкладок из-за дефектов диэлектрика. Надо каким-то образом доказать, что наблюдаемый ток не является следствием тривиальных закороток, а действительно является туннельным током. Для этого Дж. Роуэлл поместил туннельный переход в магнитное поле, направленное вдоль плоскости барьера. Естественно, что магнитное поле не может влиять на закоротки и в этом случае ток практически не изменился бы. Однако даже очень слабое магнитное поле влияло на ток, причем совершенно нетривиальным образом.
Дело в том, что магнитное поле изменяет фазу волновой функции сверхпроводящих электронов. Поскольку в этом, пожалуй, наиболее ярко проявляется макроскопический квантовый характер сверхпроводящего состояния и эти явления продолжают оставаться в центре внимания и в настоящее время, рассмотрим их более подробно.
Уже в первом эксперименте было обнаружено, что максимальный сверхпроводящий ток Ic в магнитном поле, параллельном плоскости контакта, немонотонно зависит (с периодом, равным кванту потока
|
Рис. 2.Зависимость критического тока Im (нормированного на критический ток при отсутствии поля Ic) джозефсоновского контакта от величины потока внешнего магнитного поля |
Чтобы рассмотрение этого явления стало более простым, включим туннельный контакт в сверхпроводящий контур (кольцо). Магнитный поток
Посмотрим, как при изменении внешнего магнитного поля меняется величина потока
| |
Рис. 3.Сверхпроводящий контур с джозефсоновским элементом во внешнем магнитном поле | Рис. 4.Двухконтактный интерферометр. Схема (а) и зависимость критического тока от величины магнитного потока (б ) |
Как только ток станет больше Ic , сверхпроводимость в контакте нарушится и в контур войдет квант потока
При дальнейшем увеличении внешнего поля ток в кольце будет уменьшаться, а поток будет оставаться равным
Особенно ярко когерентные свойства сверхпроводящего состояния проявляются при включении в контур двух джозефсоновских контактов (рис. 4, а). Полный ток I при этом определяется интерференцией токов, протекающих через контакты:
где
С 1911 по 1986 было исследовано очень много сверхпроводящих металлов и сплавов, но наивысшая измеренная температура перехода составляла 23,2 К. Для охлаждения до такой температуры требовался дорогостоящий жидкий гелий (4Не). Поэтому наиболее успешные применения сверхпроводимости оставались на уровне лабораторных экспериментов, для которых не требуется больших количеств жидкого гелия.
В конце 1986 К.Мюллер (Швейцария) и Й.Беднорц (Германия), работая в исследовательской лаборатории IBM в Цюрихе, обнаружили, что керамический проводник, построенный из атомов лантана, бария, меди и кислорода, имеет температуру перехода в сверхпроводящее состояние, равную 35 К. Вскоре исследовательские группы в разных странах мира изготовили керамические материалы с температурой перехода от 90 до 100 К, которые способны оставаться сверхпроводниками (2-го рода, см. выше) в магнитных полях до 200 кГс.