Смекни!
smekni.com

Термодинамика (стр. 2 из 8)

Первое начало можно сформулировать в нескольких видах :

Невозможно возникновение и уничтожение энергии .

Любая форма движения способна и должна превращаться в любую другую форму движения .

Внутренняя энергия является однозначной формой состояния .

Вечный двигатель первого рода невозможен .

Бесконечно малое изменение внутренней энергии является полным дифференциалом.

Сумма количества теплоты и работы не зависит от пути процесса.

Первый закон термодинамики , постулируя закон сохранения

энергии для термодинамической системы. не указывает направление происходящих в природе процессов. Направление термодинамических процессов устанавливает второе начало термодинамики.

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ.

Второе начало термодинамики устанавливает наличие в природе фундаментальной асимметрии , т.е. однонаправленности всех происходящих в ней самопроизвольных процессов .

Второй основной постулат термодинамики связан так же с другими свойствами термодинамического равновесия как особого вида теплового движения. Опыт показывает , что если две равновесные системы А и В привести в тепловой контакт , то независимо от различия или равенства у них внешних параметров они или остаются по прежнему в состоянии термодинамического равновесия , или равновесие у них нарушается и спустя некоторое время в процессе теплообмена ( обмена энергией ) обе системы приходят в другое равновесное состояние. Кроме того , если имеются три равновесные системы А,В и С и если системы А и В поразнь находятся в равновесии с системой С, то системы А и В находятся в термодинамическом равновесии и между собой (свойства транзитивности термодинамического равновесия ).

Пусть имеются две системы . Для того , чтобы убедится в том , что они находятся в состоянии термодинамического равновесия надо измерить независимо все внутренние параметры этих систем и убедиться в том , что они постоянны во времени. Эта задача черезвычайно трудная .

Оказывается однако , что имеется такая физическая величина , которая позволяет сравнить термодинамические состояния двух систем и двух частей одной системы без подробного исследования и внутренних параметров. Эта величина , выражающая состояние внутреннего движения равновесной системы , имеющая одно и то же значение у всех частей сложной равновесной системы независимо от числа частиц в них и определяемое внешними параметрами и энергией называется температурой .

Температура является интенсивным параметром и служит мерой интенсивности теплового движения молекул.

Изложенное положение о существовании температуры как особой функции состояния равновесной системы представляет второй постулат термодинамики.

Иначе говоря , состояние термодинамического равновесия определяется совокупностью внешних параметров и температуры.

Р.Фаулер и Э.Гуггенгейм назвали его нулевым началом , так как оно подобно первому и второму началу определяющим существование некоторых функций состояния , устанавливает существование температуры у равновесных систем. Об этом упоминалось выше.

Итак , все внутренние параметры равновесной системы являются функциями внешних параметров и температур .(Второй постулат термодинамики).

Выражая температуру через внешние параметры и энергию , второй постулат можно сформулировать в таком виде : при термодинамическом равновесии все внутренние параметры являются функциями внешних параметров и энергии.

Второй постулат позволяет определить изменение температуры тела по изменению какого либо его параметра , на чем основано устройство различных термометров.

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ.

Процесс перехода системы из состояния 1 в 2 называется обратимым , если возвращением этой системы в исходное состояние из 2 в 1 можно осуществить без каких бы то ни было изменений окружающих внешних телах.

Процесс же перехода системы из состояния 1 в 2 называется необратимым , если обратный переход системы из 2 в 1 нельзя осуществить без изменения в окружающих телах .

Мерой необратимости процесса в замкнутой системе является изменением новой функции состояния - энтропии , существование которой у равновесной системы устанавливает первое положение второго начала о невозможности вечного двигателя второго рода . Однозначность этой функции состояния приводит к тому , что всякий необратимый процесс является неравновесным.

Из второго начала следует , что S является однозначной функцией состояния. Это означает , что dQ/T для любого кругового равновесного процесса равен нулю. Если бы это не выполнялось , т.е. если бы энтропия была неоднозначной функцией состояния то , можно было бы осуществить вечный двигатель второго рода.

Положение о существовании у всякой термодинамической системы новой однозначной функцией состояния энтропии S , которая при адиабатных равновесных процессах не изменяется и состовляет содержание второго начала термодинамики для равновесных процессов.

Математически второе начало термодинамики для равновесных процессов записывается уравнением:

dQ/T = dS или dQ = TdS (1.3)

Интегральным уравнением второго начала для равновесных круговых процессов является равенство Клаузиуса :

dQ/T = 0 (1.4)

Для неравновесного кругового процесса неравенство Клаузиуса имеет следующий вид :

dQ/T < 0 (1.5)

Теперь можно записать основное уравнение термодинамики для простейшей системы находящейся под всесторонним давлением :

TdS = dU + pdV (1.6)

Обсудим вопрос о физическом смысле энтропии.

1.4.2. ЭНТРОПИЯ.

Второй закон термодинамики постулирует существование функции состояния , называемой «энтропией» ( что означает от греческого «эволюция» ) и обладающей следующими свойствами :

а) Энтропия системы является экстенсивным свойством . Если система состоит из нескольких частей , то полная энтропия системы равна сумме энтропии каждой части .

в) Изменение энтропии d S состоит из двух частей . Обозначим через dе S поток энтропии, обусловленный взаимодействием с окружающей средой , а через di S - часть энтропии , обусловленную изменениями внутри системы , имеем

d S = de S + di S (1.7)

Приращение энтропии di S обусловленное изменением внутри системы , никогда не имеет отрицательное значение . Величина di S = 0 , только тогда , когда система претерпевает обратимые изменения , но она всегда положительна , если в системе идут такие же необратимые процессы.

Таким образом

di S = 0 (1.8)

( обратимые процессы );

di S > 0 (1.9)

( необратимые процессы );

Для изолированной системы поток энтропии равен нулю и выражения (1.8) и (1.9) сводятся к следующему виду :

d S = di S > 0 (1.10)

( изолированная система ).

Для изолированной системы это соотношение равноценно классической формулировке , что энтропия никогда не может уменьшаться , так что в этом случае свойства энтропийной функции дают критерий , позволяющий обнаружить наличие необратимых процессов . Подобные критерии существуют и для некоторых других частных случаев .

Предположим , что система , которую мы будем обозначать символом 1 , находится внутри системы 2 большего размера и что общая система , состоящая системы 1 и 2 , является изолированной.

Классическая формулировка второго закона термодинамики тогда имеет вид :

d S = d S1 + d S2 ³ 0 (1.11)

Прилагая уравнения (1.8) и (1.9) в отдельности каждой части этого выражения , постулирует , что di S1 ³ 0 , di S2 ³ 0

Ситуация при которой di S1 > 0 и di S2 < 0 , а d( S1 + S2 )>0 , физически неосуществима . Поэтому можно утверждать , что уменьшение энтропии в отдельной части системы , компенсируемое достаточным возрастанием энтропии в другой части системы , является запрещенным процессом . Из такой формулировки вытекает , что в любом макроскопическом участке системы приращение энтропии , обусловленное течением необратимых процессов , является положительным. Под понятием « макроскопический участок » системы подразумевается любой участок системы , в котором содержится достаточное большое число молекул , чтобы можно было принебреч микроскопическими флуктуакциями. Взаимодействие необратимых процессов возможно лишь тогда, когда эти процессы происходят в тех же самых участках системы .

Такую формулировку второго закона можно было бы назвать « локальной » формулировка в противоположность « глобальной » формулировка классической термодинамики . Значение подобной новой формулировке состоит в том ,что на ее основе возможен гораздо более глубокий анализ необратимых процессов .

ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ.

Открытие третьего начала термодинамики связано с нахождением химического средства - величины , характеризующих способность различных веществ химически реагировать друг с другом . Эта величина определяется работой W химических сил при реакции . Первое и второе начало термодинамики позволяют вычислить химическое средство W только с точностью до некоторой неопределенной функции . Чтобы определить эту функцию нужны в дополнении к обоим началам термодинамики новые опытные данные о свойствах тел . Поэтому Нернстоном были предприняты широкие экспериментальные исследования поведение веществ при низкой температуре .

В результате этих исследований и было сформулировано третье начало термодинамики : по мере приближения температуры к 0 К энтропия всякой равновесной системы при изотермических процессах перестает зависить от каких-либо термодинамических параметров состояния и в пределе ( Т= 0 К) принимает одну и туже для всех систем универсальную постоянную величину , которую можно принять равной нулю .