В своих исследованиях автор исходил только из одного факта существования природного единства "вещество – пространство – время". Об этом хорошо знали еще древние, когда говорили, что в Природе нет ничего, кроме беспрестанно движущейся во времени и в пространстве материи (которая представляет собой вещество и образуемые им переменные электромагнитные и гравитационные поля). Механическое обращение планеты вокруг движущегося Солнца, происходящее в переменных термодинамических условиях по строго фиксированной (т.е. – квантованной) во времени и пространстве винтовой эллиптической траектории, есть не что иное, как наблюдаемое нами тысячелетиями изо дня в день проявление этого природного единства.
В работах автора [1–5] показано, что дифференциальные законы механики и химической термодинамики образуют систему изначально квантовых законов химической термомеханики в ньютоновской форме записи, описывающих одновременные изменения параметров, присущих всем указанным взаимодействиям. Это достигается введением в законы механики безразмерного параметра, связывающего воедино пространство, время, а также химический состав, физико-химические свойства и термодинамическое состояние вещества. На протонно-электронном уровне строения вещества этот параметр является управляющим и управляемым одновременно. Он зависит только от величины главного квантового числа и определяет форму траектории тела в зависимости от термодинамического состояния тела или окружающей среды (т.е. является функцией давления и абсолютной температуры). Для различных форм траекторий заряженных и незаряженных микрочастиц в атоме и его ядре параметр имеет различные выражения и пределы изменения. В силу же того, что он безразмерен, параметр применим для описания любых процессов, происходящих как в макро-, так и в микромире. Наконец, поскольку этот параметр, фактически, в самой полной мере отражает все составляющие природного единства "вещество – пространство – время", то его отсутствие в какой-либо теории макро- или микромира служит прямым указанием на то, что эта теория действует за рамками этого природного единства и потому подлежит пересмотру. Этого параметра не оказалось ни в одной (!) физико-химической теории макро- и микромира за исключением уравнения П. Лапласа, применяемого в термодинамике для предельно точных (что вовсе не случайно) расчетов величины скорости звука в твердых, жидких и газообразных веществах. Отсюда очевидны истинные масштабы кризиса нашего естествознания, а также его многочисленных практических приложений, являющихся главными источниками экологических катастроф в промышленно развитых государствах мира. Одним из важнейших явлений микромира, открытым Г. Герцем, исследованным А. Г. Столетовым, А. Эйнштейном, Н. Бором и др., является фотоэффект. Различают внешний и внутренний фотоэффекты. Внешним фотоэффектом принято называть процесс испускания электронов веществом под воздействием света (т.е. потока фотонов). С внутренним фотоэффектом связан скачкообразный процесс перехода электрона в атоме с одной устойчивой орбиты на другую, который сопровождается поглощением энергии фотона. Обратные переходы электрона при внутреннем фотоэффекте сопровождаются рождением фотона первоначальной энергии. Совершенно аналогичные явления (только с участием в них g-квантов) происходят и в ядре атома. С целью наглядного отображения особенностей внешнего и внутреннего фотоэффектов автором разработана принципиально новая (управляемая) модель атома и его ядра в графическом ее представлении. В этой модели указанные взаимодействия протекают при фотоэффекте одновременно в зависимости от величины главного квантового числа. Для модели определены возможные формы траекторий заряженных и незаряженных микрочастиц в атоме и его ядре при установившихся и скачкообразных их движениях, а также влияние форм этих траекторий и величин главного квантового числа на изменения различных параметров взаимодействий, в том числе — на изменения геометрии атома и его ядра.
Для этой модели ньютоновская система квантовых законов химической термомеханики приводится к системе квантовых законов электромагнитного и гравитационного полей, в которых и протекают все указанные взаимодействия одновременно в квантовано изменяющихся условиях по р, Т, влияющих на химическую активность атома и механику движений микрочастиц в нем и его ядре. Система законов электромагнитного поля Д.Максвелла также допускает квантование и совместно с ньютоновской системой законов образует единую систему квантовых законов электромагнитного и гравитационного полей. Данная система законов впервые допускает возможность детального описания изменений любых параметров любых взаимодействий, происходящих в атоме и его ядре при внешнем и внутреннем фотоэффектах. Расчеты, выполненные на основе этой системы законов, количественно и качественно согласуются как с многочисленными экспериментальными данными атомной и ядерной физики, так и с опытными результатами по изменению веса макротел вследствие различных внешних энерговоздейсвий на них. С помощью этой модели стало очевидным, что атом и его ядро представляют собой энергетически взаимосвязанную квантовую приемопередающую фазово-амплитудно-частотную систему, постоянно обменивающуюся энергоинформацией о своем состоянии с окружающей средой. Переносчиками энергоинформации служат фотоны в атоме (g-кванты — в ядре атома), которые представляют собой электромагнитные волны (т.е. – свет), обладающие широчайшим спектром частот, фаз и амплитуд, что свидетельствует о том, что вся Вселенная фактически состоит из света и управляется также светом. Исследования модели показали, что между разноименно заряженными микрочастицами атома и его ядра действуют строго сбалансированные в любой момент времени кулоновские и гравитационные силы (также кулоновского происхождения). Так называемых «ядерных сил» (порожденных исключительно фантазиями современной квантовой механики) в Природе не существует. Оказалось, что в полученной таким способом совмещенной системе ньютоновских и максвелловских законов составляющие её вспомогательные законы являются избыточными по отношению к квантовому закону сохранения полной энергии, также содержащему параметр, отражающий единство вещества, пространства и времени. Это вовсе не удивительно, если учесть, что все вспомогательные законы этой системы выполняются одновременно с законом сохранения полной энергии, причем каждый из них описывает лишь присущую только ему одному сторону одного и того же процесса, происходящего при фотоэффекте. Это обстоятельство непосредственно указывает на то, что, на самом деле, всеми взаимодействиями в Природе управляет один-единственный квантовый закон сохранения полной энергии, который всегда может быть представлен в форме записи, соответствующей тому или иному виду природного взаимодействия. Одновременно это указывает на то, что единственным принципом функционирования окружающего макро- и микромира Вселенной является принцип фотоэффекта. Формулы же, описывающие любые спектральные характеристики атомов и их ядер, при фотоэффекте (как внутреннем, так и внешнем) могут быть получены только на основе закона сохранения полной энергии. Таким образом, все без исключения наши физико-химические знания об окружающем макро- и микромире живой и неживой Природы содержатся в концентрированном виде именно в этом единственном квантовом законе. В связи с этим, спектральные характеристики атомов и ядер различных химических элементов, содержащие предельно точную информацию обо всех деталях происходящих в них процессов при фотоэффекте, приобретают значение естественных программных данных, которые можно (и необходимо) использовать не только для определения условий протекания желательных или нежелательных внутриатомных и внутриядерных процессов, но также и для непосредственного управления этими процессами с помощью автоматики. При соблюдении необходимых условий по температуре и давлению представляется вполне реальным искусственно изменять химическую природу любого элемента таблицы Д. И. Менделеева в желаемом для оператора темпе времени. Это открывает самые широкие перспективы для разработки и создания в недалеком будущем действующих по единому принципу управления принципиально новых экологически чистых и предельно дешевых безотходных технологий, производств, мощных источников энергии, средств транспорта, связи, видения, вычислительной техники, лучевых устройств, систем контроля и управления физическими, химическими, технологическими процессами, в том числе — процессами, происходящими на уровне живых клеток организмов и растений. Учитывая возможные интересы читательской аудитории журнала, остановлюсь лишь на некоторых наиболее важных, с моей точки зрения, прикладных аспектах предлагаемого способа.