Смекни!
smekni.com

Физическая картина мира (стр. 2 из 5)

Распространив на всю Вселенную закон тяготения, Ньютон рассмотрел и возможную ее структуру. Он пришел к выводу, что Вселенная является не конечной, а бесконечной. Лишь в этом случае в ней может существовать множество космических объектов — центров гравитации. Так, в рамках ньютоновской гравитационной модели Вселенной утверждается представление о бесконечном пространстве, в котором находятся космические объекты, связанные между собой силой тяготения.

В 1687 г. вышел основополагающий труд Ньютона "Мате­матические начала натуральной философии". Этот труд более чем на два столетия определил развитие всей естественно­научной картины мира. В нем были сформулированы основные законы движения и дано определение понятий пространства, времени, места и движения.

Раскрывая сущность времени и пространства, Ньютон ха­рактеризует их как "вместилища самих себя и всего существую­щего. Во времени все располагается в смысле порядка последова­тельности, в пространстве — в смысле порядка положения".

Он предлагает различать два типа понятий пространства и време­ни: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику:

- Абсолютное, истинное, математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешне­му, протекает равномерно и иначе называется длительностью.

- Относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год.

- Абсолютное пространство по своей сущности, безотноси­тельно к чему бы то ни было внешнему, остается всегда одина­ковым и неподвижным. Относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая опре­деляется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное.

Из определений Ньютона следовало, что разграничение им понятий абсолютного и относительного пространства и време­ни связано со спецификой теоретического и эмпирического уровней их познания. На теоретическом уровне классической механики представления об абсолютном пространстве и време­ни играли существенную роль во всей причинной структуре описания мира. Оно выступало в качестве универсальной инерциальной системы отсчета, так как законы движения клас­сической механики справедливы в инерциальных системах от­счета. На уровне эмпирического познания материального мира понятия "пространства" и "времени" ограничены чувствами и свойствами познающей личности, а не объективными призна­ками реальности как таковой. Поэтому они выступают в каче­стве относительного времени и пространства.

Ньютоновское понимание пространства и времени вызвало неоднозначную реакцию со стороны его современников — ес­тествоиспытателей и философов. С критикой ньютоновских представлений о пространстве и времени выступил немецкий ученый Г.В. Лейбниц. Он развивал реляционную концепцию про­странства и времени, отрицающую существование пространства и времени как абсолютных сущностей.

Указывая на чисто относительный (реляционный) характер пространства и времени, Лейбниц пишет: "Считаю пространст­во так же, как и время, чем-то чисто относительным: простран­ство — порядком сосуществовании, а время — порядком последо­вательностей".

Предвосхищая положения теории относительности Эйн­штейна о неразрывной связи пространства и времени с матери­ей, Лейбниц считал, что пространство и время не могут рас­сматриваться в "отвлечении" от самих вещей. "Мгновения в отрыве от вещей ничто, — писал он, — и они имеют свое су­ществование в последовательном порядке самих вещей".

Однако данные представления Лейбница не оказали замет­ного влияния на развитие физики, так как реляционная кон­цепция пространства и времени была недостаточна для того, чтобы служить основой принципа инерции и законов движе­ния, обоснованных в классической механике Ньютона. Впо­следствии это было отмечено и А. Эйнштейном.

Успехи ньютоновской системы (поразительная точность и кажущаяся ясность) привели к тому, что многие критические соображения в ее адрес обходились молчанием. А ньютонов­ская концепция пространства и времени, на основе которой строилась физическая картина мира, оказалась господствующей вплоть до конца XIX в.

Основные положения этой картины мира, связанные с про­странством и временем, заключаются в следующем.

- Пространство считалось бесконечным, плоским, "прямо­линейным", евклидовым. Его метрические свойства описыва­лись геометрией Евклида. Оно рассматривалось как абсолют­ное, пустое, однородное и изотропное (нет выделенных точек и направлений) и выступало в качестве "вместилища" материаль­ных тел, как независимая от них инерциальная система.

- Время понималось абсолютным, однородным, равномер­но текущим. Оно идет сразу и везде во всей Вселенной "единообразно и синхронно" и выступает как независимых материальных объектов процесс длительности, Фактически классическая механика сводила время к длительности, фикси­руя определяющее свойство времени "показывать последовательность события”. Значение указаний времени в классической механике считалось абсолютным, не зависящим от состояния движения тела отсчета.

- Абсолютное время и пространство служили основой для преобразований Галилея-Ньютона, посредством которых осуществлялся переход к инерциальным системам. Эти системы выступали в качестве избранной системы координат в классической механике.

- Принятие абсолютного времени и постулирование абсолютной и универсальной одновременности во всей Вселенной явилось основой для теории дальнодействия. В качестве дальнодействующей силы выступало тяготение, которое с 6есконечной скоростью, мгновенно и прямолинейно распространяло силы на бесконечные расстояния. Эти мгновенные, вневре­менные взаимодействия объектов служили физическим карка­сом для обоснования абсолютного пространства, существую­щего независимо от времени.

До XIX в. физика была в основном физикой вещества, т. е. она рассматривала поведение материальных объектов с конечным числом степеней свободы и обладающих конечной массой покоя. Изучение электромагнитных явлений в XIX в. выявило ряд существенных отличий их свойств по сравнению с механическими свойствами тел.

Если в механике Ньютона силы зависят от расстояний меж­ду телами и направлены по прямым, то в электродинамике (теории электромагнитных процессов), созданной в XIX в. анг­лийскими физиками М. Фарадеем и Дж. К. Максвеллом, силы зависят от расстояний и скоростей и не направлены по пря­мым, соединяющим тела. А распространение сил происходит не мгновенно, а с конечной скоростью. Как отмечал Эйнштейн, с развитием электродинамики и оптики становилось все очевиднее, что "недостаточно одной классической механики для полного описания явлений природы". Из теории Максвел­ла вытекал вывод о конечной скорости распространения элек­тромагнитных взаимодействий и существовании электромаг­нитных волн. Свет, магнетизм, электричество стали рассматри­ваться как проявление единого электромагнитного поля. Таким образом, Максвеллу удалось подтвердить действие законов со­хранения и принципа близкодействия благодаря введению по­нятия электромагнитного поля.

Итак, в физике XIX в. появляется новое понятие — "поля", что, по словам Эйнштейна, явилось "самым важным достиже­нием со времени Ньютона". Открытие существования поля в пространстве между зарядами и частицами было очень сущест­венно для описания физических свойств пространства и време­ни. Структура электромагнитного поля описывается с помощью четырех уравнений Максвелла, устанавливающих связь вели­чин, характеризующих электрические и магнитные поля с распре­делением в пространстве зарядов и токов. Как заметил Эйн­штейн, теория относительности возникает из проблемы поля.

Специального объяснения в рамках существовавшей в кон­це XIX в. физической картины мира требовал и отрицательный результат по обнаружению мирового эфира, полученный аме­риканским физиком А. Майкельсоном. Его опыт доказал неза­висимость скорости света от движения Земли. С точки зрения классической механики, результаты опыта Майкельсона не поддавались объяснению. Некоторые физики пытались истол­ковать их как указывающие на реальное сокращение размеров всех тел, включая и Землю, в направлении движения под дей­ствием возникающих при этом электромагнитных сил.

Создатель электронной теории материи X. Лоренц вывел ма­тематические уравнения (преобразования Лоренца) для вычис­ления реальных сокращений движущихся тел и промежутков времени между событиями, происходящими на них, в зависи­мости от скорости движения.

Как показал позднее Эйнштейн, в преобразованиях Лорен­ца отражаются не реальные изменения размеров тел при дви­жении (что можно представить лишь в абсолютном пространст­ве), а изменения результата измерения в зависимости от движения системы отсчета.

Таким образом, относительными оказывались и "длина", и "промежуток времени" между событиями, и даже "однов­ременность" событий. Иначе говоря, не только всякое движе­ние, но и пространство, и время.