Задаваемое осциллятором атомное время в некоторой точке пространства является собственным временем в смысле специальной теории относительности. Атомная шкала неявно используется и в квантовой механике. В квантовой механике уравнение движения имеет вид:
ih(dy/dt) = Hy,
где y — зависящая от времени волновая функция, H — гамильтониан, а соотношение
DE=hn
является прямым следствием уравнения движения.
Таким образом, из предположения о неизменности частоты, соответствующей данной разности энергий, на котором основана атомная шкала времени, следует вывод о справедливости уравнения движения.
Подобным же образом, в шкале эфемеридного времени справедливы ньютоновские законы движения, ибо из них следует, что период обращения планеты вокруг центра тяготения по некоторой невозмущенной эллиптической орбите постоянен.
В релятивистской теории, однако, физический смысл эфемеридного времени уже не столь ясен. Высказывалась мысль, что оно должно быть отождествлено с координатным временем специальной теории относительности, но с этим утверждением согласны далеко не все. Во всяком случае выяснение того, существует ли расхождение между атомной и эфемеридной шкалой времени, представляло бы несомненный интерес - однако, надежное установление этого факта потребует многих десятилетий.
Выводы:
На примере квантовой метрологии и становления проблемы измерения времени, опираясь на новейшие достижения квантовой механики и лазерной физики. Четко прослеживается структура научной теории, описанная в рамках логического позитивизма. Теория измерения времени по квантовым переходам имеет под собой эмпирическую основу с классификацией явлений, фактическим и типологическим материалом. Квантовые явления являются изученными и классифицированными явлениями, что позволяет выбирать наиболее подходящие при наличии большого числа вариантов. Это позволяет обеспечивать широкий спектр метрологических применений. При разработке квантовых (оптических) часов использовались теоретические модели, в которых за основу были взяты оптические переходы атомов и молекул, для которых построена строгая теоретическая модель. Базисом подобных исследований являются современные философские теории об измерениях времени, его идеализации.
* - Лазер во времена греко-римской цивилизации
(пояснения к цитате из Плиния Старшего).
В период греко-римской цивилизации (ориентировочно начиная с 6 в. до н. э. и кончая 2 в. н. э.) лазер был широко известен и весьма прославлялся. В отличие от современного лазера это было в действительности растение, обладавшее, впрочем, не менее замечательными свойствами. Это растение (относившееся, возможно, к зонтичным) в диком виде встречалось на большой территории около г. Кирены (в настоящее время принадлежит Ливии). Иногда это растение именовали также Laserpitium и за почти чудодейственные свойства считали божьим даром. Оно применялось для лечения множества болезней - от простуды до различных эпидемических заболеваний. Его использовали как противоядие против укуса змей, скорпионов или при попадании в тело отравленной стрелы. Благодаря своим прекрасным вкусовым качествам это растение употребляли в качестве изысканной приправы в самой лучшей кухне. Оно представляло столь большую ценность, считалось основным источником процветания Кирены; его вывозили как в Грецию, так и в Рим. В период римского господства это была единственная дань, которую жители Кирены платили римлянам, хранившим лазер в свих сундуках вместе с золотыми слитками. Возможно, лучшим свидетельством существования лазера (растения) является его изображение на известной чаше Арцесилао (эта чаша хранится теперь в музее г. Кирены, Ливия), на которой можно видеть, как носильщики грузят на корабль под наблюдением короля Арцесилао. И греки, и римляне пытались выращивать лазер в различных частях Апулии и Ионии (на юге Италии), но это им не удалось сделать. Впоследствии лазер встречался все реже и реже и, по-видимому, около 2 в. н. э. Исчез навсегда. С тех пор, несмотря на то что предпринимались большие усилия найти лазер в пустынях к югу от Кирены, он так и не был обнаружен и, таким образом, останется утраченным сокровищем греко-римской цивилизации.
Список литературы.
1. Квантовая метрология, Кук А. Москва, Наука, 1985г.
2. Государственная Научно-техническая программа “Фундаментальная метрология” (сборник отчетов за 1995г), Новосибирск, 1995г.
3. Принципы лазеров, О. Звелто М., Мир, 1990г.
4. Кванты (сборник концепций), П. Эткинс, М., Мир, 1977г.