Рис 8. Зависимость нестационарной температуры от относительной вязкости при различных временах. Обозначения: 1- t =100 000 c; 2 -1 000 000; 3 – 1 500 000. |
На рис. 9. показана зависимость баротермического эффекта от времени при различных коэффициентах барической сжимаемости. Из рисунка видно,
Рис 9. Зависимость нестационарной температуры от времени при различных коэффициентах барической сжимаемости. Обозначения: 1- α =0,0003 Па-1; 2 -0,00001; 3 -0,000001; 4 -0,0000001;5 – 0,0000005. |
что при уменьшении барической сжимаемости величина температурного эффекта уменьшается. В расчетах принято: ε=-0.5∙10-5
; rW=0.1 ; с=850 ; k=10-15 ; сPL=84000000 ; µ=10-5 ; R=100 ; ρ=150 ; P=100∙105 ; P0=150∙105 ; PC=200∙105 ; PW=150∙105 .
4.2. Изучение вклада сжимаемости в величину баротермического эффекта
На рис. 10 показана зависимость баротермического эффекта от коэффициента барической сжимаемости при различных временах для малого диапазона температур. Из рисунка видно, что при малых временах зависимость близка к линейной. При больших временах наблюдается небольшой спад температуры. В расчетах принято:ε=-0.5∙10-5
; rW=0.1 ; с=850 ; k=10-15 ; сPL=84000000 ; µ=10-5 ; R=100 ; ρ=150 ; α=10-7 ; P=100∙105 ; P0=150∙105 ; PC=200∙105 ; PW=150∙105 .Рис. 10. Зависимость нестационарной температуры от коэффициента барической сжимаемости при различных временах. Обозначения: 1- t = 100 c; 2 -1000 ; 3 – 10 000; 4 -100 000. |
На рис. 11. показана зависимость стационарной температуры от коэффициента барической сжимаемости. Из рисунка видно что величина температурного эффекта в стационарном случае не зависит от коэффициента барической сжимаемости. В расчетах принято: ε=-0.5∙10-5; rW=0.1; с=850; k=10-15; сPL=84000000; µ=10-5; R=100; ρ=150; P=100∙105; P0=150∙105; PC=200∙105; PW=150∙105.
Рис. 11 Зависимость стационарной температуры от коэффициента барической сжимаемости. |
На рис. 12. приведена зависимость времени установления температуры от коэффициента барической сжимаемости.
Рис 12. Зависимость времени установления температуры от коэффициента барической сжимаемости. |
Итак, изучение вклада сжимаемости в величину баротермического эффекта показывает, что в нестационарных полях величина температурного эффекта сильно зависит от сжимаемости, а после установления температуры не зависит от сжимаемости.
4. 3. Выводы
В данной главе сделан анализ результатов расчетов и исследованы температурные поля, возникающих при фильтрации газа. Показано, что величина температурного эффекта составляет около 20 К. Время установления температурного эффекта сильно зависит от проницаемости и для реальных значений проницаемости составляет приблизительно сутки. Это важно учитывать при интерпритации результатов термических исследований скважин.
Изучен вклад сжимаемости в величину баротермического эффекта. Показано, что в нестационарных полях величина температурного эффекта сильно зависит от сжимаемости, а после установления температуры не зависит от сжимаемости.
Показано, что время установления баротермического эффекта зависит от барической сжимаемости и лежит в пределах до 109 с при α~10-8 Па-1. При α~10-8 Па-1 время полного установления составляет (приблизительно) три года. Значит температурные поля в газовом пласте практически всегда нестационарны.
В ходе проделанной работы были получены следующие результаты:
1. Описаны основные уравнения состояния реального газа, уравнения, описывающие процесс фильтрации газа в пористой среде.
2. Представлено аналитическое решение задачи о баротермическом эффекте с учетом реального уравнения состояния.
3. Получено аналитическое решение задачи о баротермическом эффекте с учетом барической сжимаемости.
4. Сделан анализ результатов расчетов и исследование температурных полей, возникающих при фильтрации газа.
5. Исследованы температурные поля и изучен вклад сжимаемости в величину баротермического эффекта. Показано, что в нестационарных полях величина температурного эффекта сильно зависит от сжимаемости, а после установления температуры не зависит от сжимаемости.
6. При α~10-8 Па-1 время полного установления температуры составляет (приблизительно) три года. Это означает, что температурные поля в газовом пласте практически всегда нестационарные. Следует отметить при этом что логарифмическая стабилизация достигается при времени около суток.
Список использованной литературы
1. Ландау Л. Д., Лившиц Е. М. Статистическая физика// М.,1964.
2. Карслоу Г., Егер Д. Теплопроводность твердых тел// М: Наука. 1964. 487с.
3. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей// М., Наука. 1972.
4. Филиппов А. И., Фридман А. А., Девяткин Е. М. Баротермический эффект при фильтрации газированной жидкости: Монография. - Стерлитамак: Стерлитамак. гос. пед. ин-т; Стерлитамакский филиал Академии наук Республики Башкортостан, 2000. – 175с.
5. Филиппов А. И. Скважинная термометрия переходных процессов. - Саратов: Изд-во Сарат. ун-та, 1989. – 116с.
6. Очан Ю. С. Методы математической физики// М: Высшая школа. 1965. 383с.
7. Яворский Б. М., Детлаф А. А. Справочник по физике. – М.: Наука, 1971. – 940с.
8. Морачевский А. Г., Сладков И. Б. Физико – химические свойства молекулярных неорганических соединений. – С. Пб.: Химия, 1996. – 312с.
9. Баскаков А. П., Гуревич М. И., Решетин Н. И. и др. Общая теплотехника. – М.-Л.: Государственное энергетическое издательство, 1963. – 392с.