Смекни!
smekni.com

Энтропия. Теория информации (стр. 5 из 8)

Пока существует разность температур T1 – T2, часть теплового потока может быть преобразована в полезную (антиэнтропийную) энергию либо в естественно протекающих процессах (например, биологических), либо с помощью тепловых машин.

При условии T1 = T2 энергия полностью утрачивает свои антиэнтропийные свойства. Этот вывод был положен в основу теории тепловой смерти Вселенной.

Заметим, что сам термин «энтропия» был введен Клаузиусом, образовавшим его от корня греческого слова «тропе», означающего «превращение» с добавлением заимствованной из слова «энергия» приставки «эн-».

. Предложенная Клаузиусом формула энтропии (1.1) не раскрывала внутренних механизмов процессов, приводящих к воз­растанию энтропии.Эта задача была решена Л.Больцманом, предложившим исчислять энтропию идеального газа по формуле :

S = K H

(1.4)

где K= 1,38 · 10 -16 эрг/градус – коэффициент Больцмана

Н - математическая энтропия.

Согласно Больцману, величина H определяется так :

H = ln

N !

(1.5)

N1 ! N2 ! … Nk !

где N - общее число молекул газа, находящегося в рассматриваемом объеме.

Ni - число молекул, движущихся со скоростями, соответствующими i-ой ячейке условного пространства скоростей.

При этом 1= 1,2, ... К ( 1.6)

Условие (1.6) означает, что все N молекул распределены по соответствующим ячейкам пространства скоростей, в количествах N1, N2, … Nk,, учитываемых уравнением (1.5)

Согласно (1.5) перестановка молекул, находящихся внутри каждой из ячеек, не влияет на величину Н . Отсюда следует, что подсчитанная по формуле (1.5) величина Р соответствует числу возможных микросостояний системы (в частности газа), при ко­тором макросостояние системы остается неизменным.

. М.Планк преобразовал формулу Больцмана (1.5), исполь­зовав для этого математическую формулу Стирлинга, справедливую для больших значений N :

ln(N !) = Nln N – N

(1.7)

В результате подстановки (1.7) в (1.5) получается соотношение :

H = Nln N – N –(S Ni ln Ni – S Ni)

i

i

С учетом условия S Ni = N, выражение для Н приводится к виду:

H = Nln N –S Ni ln Ni

(1.8)

i

Далее Планк ввел в рассмотрение вероятности различных сос­тояний молекул, определив их как :

pi =

Ni

(1.9)

N

При этом второе слагаемое в правой части (1.8) можно пред­ставить как:

S Ni ln Ni =S pi N ( ln pi + ln N ) = N S pi ln pi + N ln N Si pi

(1.10)

i

i

i

i


С учетом известного из теории вероятностей условия норми­ровки S pi = 1, подстановка (1.10) в (1.8) приводит выражение для Н к окончательному виду :

H = –S pi ln pi

(1.11)

i

Проделанные Планком с помощью формулы Стирлинга чисто формальные преобразования не только позволили получить новое выражение для исчисления энтропии, но помогли более глубоко осознать смысл вычисляемой величины Н . Выражение (1.11) позволяет сделать два важных вывода :

1. Введение в формулу энтропии значений вероятностей расширило рамки применимости этой формулы далеко за пределы исследуемых термодинамикой молекулярных систем. Символ pi может обозначать вероятность не толь­ко тех или иных состояний молекул, но и различных сост­ояний элементов любых систем (в частности, вероятностей появления букв текста или других символов пер­едаваемых сообщений).

2. Выражение (1.11) соответствует полной энтропии системы. Поделив подсчитанную по формуле (1.11) величину на Ni , можно определить усредненную величину энтропии Н , относящуюся к одному элементу рассматриваемой системы, т.е.

(1.8)

H = –S pi ln pi

i

Именно в таком виде использовал функцию энтропии Шеннон для определения среднего значения энтропии одной буквы текста (опуская при этом знак усреднения).

. Согласно Шеннону, средняя энтропия одной буквы текста вычисляется по формуле (1.2) путем суммирования слагаемых pi log pi , в которых символом pi , обозначены вероятности соот­ветствующих букв. Таким образом :

i

(1.13)

H = –S pi ln pi = - (pа log pа + pб log pб +…+ pя log pя)

i

Для удобства исчисления энтропии сообщений, передаваемых двоичным кодом, Шеннон заменил используемый термодинамикой натуральный логарифм ln двоичным логарифмом log2.

МЕТОДЫ ИСЧИСЛЕНИЯ КОЛИЧЕСТВА СТРУКТУРНОЙ ИНФОРМАЦИИ И ИНФОРМАЦИОННОЙ ЭНТРОПИИ ТЕКСТОВ

До опубликования созданной К.Шенноном теории Р.Хартли предложил определять количество информации по формуле :

I = log2 N

(2.1)

где I - количество информации ;

N - число возможных (ожидаемых) сообщений.

Для учета различной степени неожиданности (вероятности) сообщений К.Шеннон предложил использовать заимствованную из статистической физики вероятностную функцию энтропии, приве­денную к виду (1.13)

В случае равной вероятности появления любой из N букв алфавита выполняется условие:

Pа = Pб = Pв = … = Pя = 1/N

(2.2)

В результате подстановки (2.2) в (2.1) и с учетом того, что:

- log1/N = + log N

получаем :

H = – (

1

log

1

)=log N

(2.3)

N

N

Сопоставляя (2.1) и (2.3), приходим к выводу, что количество информации, вычисляемое по формуле Хартли, соответствует ус­транению неопределенности Н при получении сообщения об одной из букв алфавита, при условии равной вероятности появления любой из букв (условие 2.2).

При равных вероятностях появления всех букв алфавита текст становится наиболее хаотичным. Подсчитанная по формуле (2.3) величина информационной энтропии достигает максимальной ве­личины :

Hmax = log N

(2.4)

За единицу количества информации принята величина ин­формации, содержащейся в сообщении об одном из двух равновероятных событий.

До получения сообщения выполняются условия :

P1 = P2 =

1

=

1

(2.5)

N

2

При подстановке (2.5) в (1.13) получаем :

H = (½ log2 ½ + ½ log2 ½) = + log2 2 = 1 bit

Наименование «бит» (“bit”) происходит от сокращения английских слов «двоичная единица» (binary unit).

В реальных текстах появлению разных букв соответствуют разные вероятности. Так, например, для русских текстов вероят­ность появления буквы "О" в 30 раз превышает вероятность появ­ления буквы «Щ» или «Э» (Ро= 0,09;
Рщ= Рэ= 0,003).

При подстановке в формулу (1.13) реальных значений вероятностей букв русского текста величина реальной информационной энтропии Нr уменьшается по сравнению с максимальной энтропией, определяемой выражением (2.4).

Разность между величиной максимальной энтропии Нmax и реальной энтропии Нr соответствует количеству избыточной (пред­сказуемой ) информации In.