Смекни!
smekni.com

Ядерный магнитный резонанс (ЯМР) (стр. 2 из 8)

С помощью спектрометров работающих в импульсном режиме можно детектировать сигналы ЯМР от любого сколь угодно малого количества вещества. Конечно, в этом случае требуется просто больше времени, чтобы получить достаточно надежные экспериментальные результаты.

Многие вещества, как известно, не растворяются или растворяются ограниченно. В этом случае сигнал ЯМР можно зарегистрировать от твердой фазы. Требуемая навеска исследуемого образца- до трех граммов. Уместно здесь отметить, что в процессе эксперимента образец не разрушается и может быть использован впоследствии для других целей.

Высокая специфичность и оперативность метода ЯМР, отсутствие химического воздействия на образец, возможность непрерывного измерения параметров открывают многообразные пути его применения в промышленности.

Внедрению метода ЯМР препятствовали :сложность аппаратуры и ее эксплуатации, высокая стоимость спектрометров, исследовательский характер самого метода.

2.Общая теория ядерного магнитного резонанса.

2.1.Классическое описание условий магнитного резонанса.

Вращающийся заряд q можно рассматривать как кольцевой ток, поэтому он ведет себя как магнитный диполь, величина момента равна:

m=iS, (2.1)

где i-сила эквивалентного тока;

S - площадь, охватываемая кольцевым током.

В соответствии с понятием силы тока имеем:

i=qn,

где n=v/2pr-число оборотов заряда q в секунду;

v-линейная скорость;

r-радиус окружности, по которой движется заряд.

Если перейти к электромагнитным единицам (т.е. разделить заряд на с) и учесть, что S=pr2, то выражение (2.1) можно переписать в следующем виде:

m=qvr/2c. (2.2)

Вращающаяся частица с массой М обладает угловым моментом (или моментом импульса)

L, представляющим собой вектор, направленный вдоль оси вращения и имеющий величину Mvr. Здесь L=[rp]=
[rv], в данном случае r^v. И заряд, и масса участвуют в одном и том же вращении (вращательном движении), поэтому вектор магнитного момента коллинеарен вектору углового момента, с которым он связан соотношением

=(q/2Mc)L=gL, (2.3)

где g=q/2Mc-гиромагнитное отношение, являющееся индивидуальной характеристикой частицы (ядра).

Рассматриваемая здесь модель, естественно, не может объяснить ни наличие магнитного момента у нейтральной частицы (например, у нейтрона), ни отрицательных магнитных моментов некоторых ядер. Тем не менее, изучение классического движения магнитного диполя в магнитном поле позволяет получить дополнительные (по сравнению с квантово-механическим рассмотрением) сведения о природе магнитного резонансного поглощения, особенно при рассмотрении нестационарных явлений. Недостатки классической модели указывают на сложность структуры ядра: полный угловой момент ядра получается в результате сложения в различных комбинациях орбитальных и спиновых движений частиц, входящих в состав ядра. Это сложение аналогично связи спиновых и орбитальных моментов электронов в атомах и молекулах.

Выражение 2.3 позволяет записать классическое уравнение движения магнитного момента

в векторной форме следующим образом:

d

/dt=g[
], (2.4)

где

–напряженность внешнего магнитного поля.

Если в отсутствии магнитного поля вращать вектор

с угловой скоростью
, то, в соответствии с законом Ньютона для вращательного движения, выражение для d
/dt будет иметь вид:

d

/dt=[
]. (2.5)

Из сопоставления выражений 2.4 и 2.5 следует, что действие магнитного поля

в точности эквивалентно вращению момента с угловой скоростью
=-g
(2.6), т.е. ω=gH, или n=gH/2p (2.7), здесь n [Гц] ,H [Э] (уместно вспомнить, что [ab]=-[ba]).

Таким образом, в постоянном магнитном поле вектор магнитного момента будет прецессировать вокруг направления вектора

с постоянной угловой скоростью -g
независимо от направления вектора
, т.е. от угла между осью вращения частицы и направлением поля (рис.1).Угловой скоростью такой прецессии называют ларморовой частотой, а выражение 2.6 – формулой Лармора.

Если перейти к системе координат, вращающейся равномерно с угловой скоростью -g

, то при отсутствии других магнитных полей вектор магнитного момента
в этой системе координат будет оставаться неизменным по величине и направлению. Другими словами, во вращающейся системе координат постоянное магнитное поле как будто отсутствует.

Рис.1. Прецессия магнитного момента в магнитном поле

Допустим теперь, что кроме поля

введено другое, более слабое поле
1, постоянное по величине и равномерно вращающееся в плоскости, перпендикулярной направлению
(рис.1). Если скорость вращения поля
1не равна частоте ларморовой прецессии, то это поле будет вращаться и в упомянутой выше вращающейся системе координат. Наличие поля приводит к появлению момента сил [
1], который стремится повернуть ядерный момент в плоскость, перпендикулярную
. Если направление
1 во вращающейся системе координат меняется, то направление соответствующего момента сил будет быстро меняться, и единственным результатом будут слабые периодические возмущения прецессии магнитного момента.

Если, однако, само поле

1вращается с ларморовой частотой, то во вращающейся системе координат оно будет вести себя подобно постоянному полю. Поэтому направление момента сил будет оставаться неизменным, что вызовет сильные колебания направления магнитного момента
, т.е. большие изменения угла между
и
0. При изменении угловой скорости вращения поля
1 колебания с наибольшей амплитудой возникают при совпадении этой скорости с ларморовой частотой. В этом случае говорят о явлении резонанса.

Аналогичное явление резонанса должно наблюдаться, когда направление поля

1фиксировано, а величина его меняется по синусоидальному закону с частотой, близкой к частоте ларморовой прецессии. Это происходит потому, что такое поле можно представить в виде суперпозиции двух равных полей, вращающихся с равными угловыми скоростями в противоположных направлениях (рис.2). При этом поле, вращающееся в направлении, противоположном направлению ларморовой прецессии, не будет оказывать влияния на резонанс.

Рис.2. Разложение вектора магнитного поля

на два вектора, вращающиеся в противоположные стороны.

На практике для создания магнитного поля, осциллирующего вдоль определенного направления, например, вдоль оси х, по катушке, ось которой перпендикулярна полю

0 и направлена вдоль оси х, пропускают переменный ток. Напряжение с частотой w, приложенное к катушке, создает поле, эквивалентное двум вращающимся в противоположных направлениях полям величиной (Н1cos wt+H1sin wt) и (H1cos wt – H1sin wt).