При этом мы следовали основным идеям кинематического рассуждения из работы Эйнштейна 1905 г. ( усилив их только рассмотрением функциональных уравнений).
Таким образом , вывод Эйнштейна , сделанный им в работе 1905 г., о ложности ньютоновской концепции абсолютного времени Ньютона следует считать необоснованным . Также не обосновано и утверждение , что он якобы доказал , что светоносного эфира не существует , что электромагнитные волны существуют сами по себе без какой-либо среды (в отличие от всех других известных нам физических волн).
Конечно , несмотря ни на что , мы можем принять утверждения Эйнштейна попросту за некую (пока , правда , существующими экспериментами еще не доказанную) научную гипотезу . Но одновременно мы должны считаться и с другой гипотезой классической физики - что светоносная среда (эфир) существует , что электромагнитные волны являются возмущениями эфира , что механическая абсолютная система отсчета - это система отсчета , в которой мировой эфир покоится.
Выбор того или иного локального поля времени в движущейся системе отсчета (ньютонова или эйнштейнова ) является , по-видимому , вообще полностью чисто условным и диктуется исключительно соображениями удобства проведения тех или иных физических рассуждений . В классической механике удобно «ньютоново» ,а в теории элементарных частиц - «эйнштейново» время.
Выбор той или иной концепции количественного времени , как утверждал Пуанкаре еще в 1898 г. , т.е. за 7 лет до работы Эйнштейна 1905г., подобен выбору той или иной системы геометрических координат в трехмерном пространстве , скажем , прямоугольной декартовой или сферической . Только от конкретной задачи зависит , какая из этих систем координат удобнее и полезнее.
Сформулируем таким образом , альтернативные фундаментальные физические гипотезы .
Гипотеза эфира. Существует особая физическая среда - эфир, заполняющая пространство , возмущенными колебаниями которого являются электромагнитные волны (включая оптические , радио , телевизионные и т.д. волны). Система отсчета , в которой эта среда покоится , является физической абсолютной системой отсчета. Она , разумеется , единственна и уникальна по всем физическим свойствам . Класс систем отсчета , движущимся относительно абсолютной равномерно прямолинейно с постоянными скоростями , образует класс инерциальных систем отсчета . В этом классе систем отсчета механические , электродинамические и др. физические явления математически и физически описываются наиболее просто.
Гипотеза эфира была провозглашена в классической физической оптике и разделялась многими физиками и математиками 17,18,19 вв., в частности Френелем в первой четверти 19 в., а также и Лоренцем в конце 19 в. и до его смерти в 1928г.
Гипотеза четырехмерного мира. Ньютонова классическая механика ошибочна. Представления об абсолютном пространстве и времени ложны по существу. Пространство и время являются геометрическим , или точнее - физическим единым целым. Их нельзя разделять
сматривать изолированно одно от другого, а надо объединять в “че-
тырёхмерный мир”, или “пространство-время”, в рамках которого только и возможно дать правильное физическое описание явлений природы. Инерциальные системы отсчёта - отражение свойств сим-
метрии четырёхмерного мира, и ничего более. Другими словами, в
вопросе об инерциальных системах отсчёта речь идёт о чисто геометрических свойствах симметрии четырёхмерного пространства-времени.
Существуют преоброзования - преоброзования симметрии четырёх
мерного пространства-времени, при которых оно переходит само в себя подобно тому,как наше трёхмерное пространство переходит са-
мо в себя при произвольных параллельных переносах и произвольных
поворотах вокруг любой оси на любой угол. Все декартовы системы
координат в трёхмерном пространстве, полученные параллельным переносом и (или)произвольным поворотом относительно произвольно
направленной оси одна из другой,-равноправны.
Обсуждаемую скорее геометрическую, чем физическую гипотезу
наиболее наглядно сформулировал Минковский в работе 1909 г. Но
ранее него её совершенно чётко сформулировал Пуанкаре,хотя в ма-
тематическом и намного более строгом, но не столь наглядном виде,
как у Минковского. Этой гипотезы по существу придерживался и Эин-
штейн в работе 1905 г.
4.14. Геометрическая симметрия четырёхмерного мира
Соображения, опирающиеся на симметрию, играют важную роль в
физических, и не только физических исследованиях. Использование име-
ющихся симметрий существенно упрощает анализ любой ситуации.
Пространство, в котором разыгрываются физические события, -
наше обычное трёхмерное пространство или четырёхмерный мир, или
пространство-время, рассматриваемые в специальной теории относи-
тельности, - тоже обладают определённой симметрией.
Объясним, - Что это означает? Какой именно симметрией обладает
четырёхмерный мир?
Идея симметрии пространства возникла из идеи симметрии геометри-
ческой фигуры, например, равностороннего треугольника или идеально
правильного куба. В частности, куб определённо обладает очень высо-
кой симметрией, и под этим мы понимаем только то, что существуют
операции, отличные от тождественной, которые переводят куб сам в себя.
Если представить себе, что мы распологаем двумя идентичными
экземплярами куба, то можно представить себе мысленно также и
“совмещение” этих двух кубов друг с другом при перемещениях и по-
воротах их в пространстве так, чтобы и вершины, и рёбра, и грани
кубов совместились друг с другом. Легко видеть, что такое совмещение
можно осуществлять по-разному : повернув предварительно каким-либо определённым образом второй куб перед совмещением его с пер-
вым. В частности, второй куб можно совместить с первым, вообще
не повёртывая его заранее. Такая операция совмещения называется
тождественной. Кроме этой тождественной операции, существуют
и другие операции, позволяющие совмещать по-разному повёрнутый
предварительно один экземпляр куба с другим его экземпляром.
Наличие таких операций, которые называют “операциями симметрии”
позволяющих совмещать геометрическую фигуру саму с собой, свиде-
тельствуют о геометрической симметрии рассматриваемой фигуры.
Множество операций симметрии геометрической фигуры образуют то,
что в математике называют группой симметрии этой фигуры.
Чем больше число операций симметрии у геометрической фигуры, тем выше её симметрия. У куба, с учётом тождественной операции,
которой обладает любое даже и совсем не симметричное тело, их ока-
зывается 48. У треугольника на плоскости их 3.
Может случиться, что множество операций симметрии в группе сим-
метрии фигуры бесконечно. Тогда имеем случай чрезвычайно высокой
симметрии. Так, шар в трёхмерном пространстве можно совместить с самим собой, повёртывая его на любой угол относительно любой оси,
проходящей через центр шара, число таких поворотов очевидно беско-
нечно.
Вернёмся к симметрии бесконечного неограниченного пространства.
Здесь тоже следует рассматривать группу преобразований симметрии,
переводящих пространство само в себя. Что касается обычного трёх-
мерного пространства, то его группа симметрии состоит из преобразо-
ваний параллельных переносов пространства вдоль любой прямой на
любое расстояние и из преобразований произвольных поворотов прос-
транства на любой угол вокруг любой оси, проходящей через любую
точку пространства.
С указанной симметрией трёхмерного пространства очевидно связан-
на инвариантность всех его свойств относительно выбора любой пря-
моугольной системы координат OXYZ , центр которой можно помес-
тить в любую точку и оси которой можно ориентировать как угодно.
Что касается четырёхмерного мира, то его группа симметрии тоже
состоит из бесконечного числа преоброзований, а имено-из преобро-
зований произволььных параллельных переносов пространства вдоль
любой “прямой” в этом пространстве, включая и ось времени, и про-
извольных “поворотов” пространства на любой “угол” вокруг любой
“оси” в этом пространстве, включая и “повороты”, не затрагивающие
осей y и z. Такие повороты какраз и являются рассматриваемыми нами
здесь преобразованиями Лоренца.
С указанной симметрией четырёхмерного мира неразрывно связана
инвариантность его геометрических свойств относительно выбора од-
ной из систем отсчёта в классе систем отсчёта, получаемых друг из дру-
га равномерным движением в произвольном направлении с произволь-
ной постоянной скоростью. Этот класс “систем координат” в четырёх-
мерном мире или по-другому - систем отсчёта, отражающих внутрен-
нюю симметрию четырёхмерного мира, и является загадочным классом
инерциальных систем отсчёта классической механики Галилея-Ньютона.
Величины, не изменяющиеся при любых операциях симметрии прост-
ранства, являются его важнейшими характеристиками. Такие величины
называют инвариантными величинами, или просто инвариантами.
В обычном трёхмерном пространстве основными величинами, инва-
риантными относительно выбора декартовых осей координат, являются
длина произвольного отрезка и угол между двумя произвольными отрез-
ками. Это самые важные количественные геометрические величины в на-
шем трёхмерном пространстве.
Если имеем две точки М1 и М2 с координатами x1,y1,z1 и x2,y2,z2, в де-
картовой системе координат К , то квадрат длинны r отрезка между этими