Физо в 1856 г. удалось измерить в земных условиях не только скорость света в воздухе (практически совпадающую со скоростью в пустоте),но и скорость света в воде, движущейся с некоторой заданной скоростью V. Эксперимент состоял в изменении смещения интерференционных полос в интерферометре, в плечи которого были помещены две трубы с прозрачными торцами и с текущей по ним в противоположных направлениях со скоростью V водой.
Эксперимент Физо показал, что наблюдаемый сдвиг интерференционных полос соответствовал скорости света в движущейся воде относительно неподвижных стенок труб, равной
Ccp.=c/n±v(1-1/n2),
где знак плюс соответствует движению светового луча и воды в одинаковом направлении, минус -в противоположных, n-показатель преломления воды.
Попытками измерить скорость эфирного ветра на движущейся Земле занимались многие крупные физики в последней четверти XIX в., проводившие для этого различные оптические и электродинамические эксперименты.
Скорость света в пустоте равна 300 000 км/c. Скорость движения Земли по своей орбите равна 30 км/с. Следовательно, v/c=0,0001, v2/c2=0,00000001; речь идёт об очень малых эффектах.
В 1871 г. Майкельсон, а в 1878 г. Майкельсон и Морли произвели первый, ставший впоследствии знаменитым эксперимент второго порядка малости по v/c - эксперимент Майкельсона, который потом неоднократно был повторен другими исследователями.
Оптический прибор - знаменитый интерферометр Майкельсона - размещался на тяжёлой каменной плите, которая плавала на ртути в бассейне в подвале здания. Ориентируя этот прибор либо плечом L1 либо плечом L2 вдоль направления движения Земли, не удалось наблюдать какого-либо различия в его показаниях (это различие должно было выразиться в смещении интерференционных полос, наблюдаемых в зрительную трубу), т.е. не удалось измерить скорость V движения Земли в межпланетном пространстве.
C. Проблема правильной физической интерпретации преобразований Лоренца.
Проблема измерения скорости эфирного ветра в оптических экспериментах получила новое своё развитие в последней четверти XIX в., когда было открыто, что свет имеет электромагнитную физическую природу, что оптика является только частью другой более фундаментальной и более глубокой физической науки-электродинамики.
Основы электродинамики сформулировал Максвелл в своём знаменитом “Трактате” в 1873 г., играющем такую же основополагающую роль в электродинамике, как «Принципы» Ньютона в механике. В этом труде были сформулированы знаменитые уравнения Максвелла и была высказана гипотеза об электромагнитной природе света - что свет является электромагнитными волнами, - которая в 1888 г. была подтверждена Г. Герцем, экспериментально открывшим электромагнитные волны радио- и СВЧ- диапазона.
В теории Максвелла впервые в истории науки связывались между собой электрические и магнитные явления с оптическими явлениями. Упругий эфир Френеля превратился, таким образом, в носителя электромагнитных возмущений и электромагнитных волн, т.е. стал электромагнитным эфиром, а электрические и магнитные поля напряжённости и индукции стали рассматриваться как показатели напряжений и деформаций этого эфира.
Максвелл представлял себе электрические и магнитные поля и электромагнитные волны механически - как возмущения гипотетической, хотя и очень своеобразной, но всё же чисто механической сплошной среды, наделённой особыми механическими свойствами; при этом он считал, что эфир в пустоте и эфир в веществе имеют различные механические свойства.
Сам Максвелл считал, что его уравнения справедливы только для покоящегося эфира, возмущениями которого являлись, по его представлениям, рассматриваемые им электромагнитные поля и волны. Систему отсчёта, в которой эфир покоится Максвелл связывал с абсолютной системой отсчёта Ньютона.
Уравнения Максвелла составлены для четырёх векторных функций: E(x,y,z,t), D(x,y,z,t) - напряжённости и индукции электрического поля, H(x,y,z,t), B(x,y,z,t) - напряжённости и индукции магнитного поля. Эти функции характеризуют возмущение неподвижного электромагнитного эфира. Изменяющиеся со временем электрическое и магнитное поля не могут существовать по отдельности - они образуют единое электромагнитное поле, представляющее собой электромагнитные, в частности оптические волны.
Уравнения Максвелла имеют следующий вид:
rot E = -дB / дt , rot H = j + дD / дt , div D = р , div B = 0,
где j=j(x,y,z,t) - объёмная плотность элекрического заряда.
Как видим, уравнения Максвелла предполагают, что координаты x,y,z и время t описываются в некоторой системе отсчёта, которая, по предположению Максвелла является системой отсчёта, в которой невозмущённый электромагнитный эфир покоится.
Попытками распространить уравнения Максвелла на произвольно движущиеся материальные прозрачные среды, которые как предполагалось в соответствии с гипотезой Френеля каким-то образом увлекали с собой эфир, занимались многие крупные физики последней четверти XIX в., но, пожалуй, больше всех Г.А. Лоренц.
Исследуя выведенные им на основе его электронной теории уравнения Максвелла для движущейся среды, Лоренц в 1895 г. пришёл к удивительному результату, что с точностью до членов первого порядка малости по v/c, где v-скорость движения системы отсчёта, c-скорость движения электромагнитных волн, эти уравнения Максвелла можно строго математически преобразовать к виду уравнений Максвелла для неподвижной среды, т.е. он строго доказал, что уравнения Максвелла «не чувствуют» поступательного движения системы отсчёта, если только она движется с постоянной скоростью.
Лоренц получил тем самым объяснение отрицательных результатов проведённых к тому времени экспериментов, показывающих, что с помощью оптических и электродинамических эффектов первого порядка по v/c, производимых с земными источниками света, невозможно определить скорость движения Земли относительно межпланетного пространства Ньютона.
Чтобы объяснить остающийся, однако, необъяснённым отрицательный результат эксперимента Майкельсона - Морли второго порядка малости по v/c Лоренц и независимо Фицджеральд выдвинули знаменитую гипотезу о сокращении всех тел, движущихся в абсолютном пространстве вдоль направления движения в отношении, зависящем от скорости движения .
Если Lо- длина покоящегося тела, L-длина движущегося тела вдоль направления движения ,то,согласно этой “гипотезе сокращения”,
где b=, v/cv -скорость движения тела.
Чтобы объяснить невозможность определения скорости v тела,равномерно и прямолинейно движущегося относительно абсолютного пространствав оптическихи электродинамических экспериментах ,не только первого,но и второго, и более высоких порядков по v/c,Лоренц доказал в своей работе по электродинамике движущихся сред (1904 г.) строгую математическую теорему,что уравнения Максвелла в покоящейся и движущейся инерциальных системах отсчета имеют математически совершенно одинаковый вид ,с точностью дочленов и первого ,и второго,и более высоких порядков по v/c включительно .Он установил ,что они инвариантны.При этом Лоренц при преобразовании уравнений Максвелла от одной инерциальной системы отсчета к другой преобразовывал также и время t,вводя математически совершенно формально так называемое “локальное время”:
t¢=t-
xгде x,t -координата и время в покоящейся системе отсчета.
В результате теоретических исследований Лоренца и проведённого Майкельсоном и Морли эксперимента естественно возникал электродинамический принцип относительности ,сформулированный Галлилеем ещё в XVII в.
Правда сам Лоренц этот принцип не провозгласил. Это сделали на основе его работ и в особенности его работы 1904 г. сначала Пуанкаре ,а немного позже и независимо Эйнштейн в 1905 г.
Согласно механическому принципу относительности ,проводя различные механические эксперименты в лаборатории, движущейся с постоянной скоростью относительно покоящейся абсолютной лаборатории, невозможно измерить ее скорость движения. (Все механические явления в обеих лабораториях происходят совершенно одинаково).
Согласно электродинамическому принципу относительности, нельзя определить скорость движения указанной движущейся лаборатории, производя в ней также и всевозможные электродинамические, в том числе оптические эксперименты. (Все электродинамические явления в обеих лабораториях происходят совершенно одинаково).
Как мы уже сказали, очень четко обобщенный общефизический принцип относительности, об инерциальных системах отсчета, впервые сформулировал Пуанкаре в 1904 г. за год до формулировки этого принципа Эйнштейном в 1905 г. и появления основополагающей в специальной теории относительности его знаменитой работы 1905 г. Пуанкаре ещё с начала 90-х годов XIX в. интересовался теорией Лоренца и работал над её развитием.
Основные преобразования инвариантности -так называемые преобразования Лоренца:
были опубликованы Лоренцем в 1904 г. в упомянутой работе.
Пуанкаре понял, что преобразования, найденные Лоренцем, составляют группупреобразований инвариантности четырехмерного пространства-времени, координатными осями которого являются пространственные оси x,y,z и ось времени t. Он же назвал преобразования, найденные Лоренцем, ”преобразованиями Лоренца”.