Попытками измерить скорость эфирного ветра на движущейся Земле занимались многие крупные физики в последней четверти XIX в.,проводившие для этого различные оптические и
электродинамические эксперименты.
Скорость света в пустоте равнв 300 000 км/c. Скорость движения Земли по своей орбите равна 30 км/с.Следовательно, v/c=0,0001, v2/c2=0,00000001; речь идёт об очень малых эффектах.
В 1871 г. Майкельсон,а в 1878 г. Майкельсон и Морли произвели первый,ставший впоследствии знаменитым эксперимент второго порядка малости по v/c - эксперимент Майкельсона,который потом неоднократно был повторен другими исследоватлями.
Оптический прибор-знаменитый интерферометр Майкельсона - размещался на тяжёлой каменной плите,которая плавала на ртути в бассейне в подвале здания.Ориентируя этот прибор либо плечом L1 либо плечом L2 вдоль направления движения Земли,не удалось наблюдать какого-либо различия в его показаниях (это различие должно было выразиться в смещении
интерференционных полос,наблюдаемых в зрительную трубу),.т.е. не удалось измерить скорость V движения Земли в межпланетном пространстве.
C. ПРОБЛЕМА ПРАВИЛЬНОЙ ФИЗИЧЕСКОЙ ИНТЕРПРЕТАЦИИ ПРЕОБРАЗОВНИЙ ЛОРЕНЦА.
Проблема измерения скорости эфирного ветра в оптических экспериментах получила новое своё развитие в последней четверти XIX в.,когда было открыто,что свет имеет электромаг-
нитную физическую природу,что оптика является только частью другой более фундаментальной и более глубокой физической науки-электродинамики.
Основы электродинамики сформулировал Максвелл в своём знаменитом “Трактате” в 1873 г., играющем такую же основополагающую роль в электродинамике,как “Принципы” Ньютона в механике.В этом труде были сформулированы знаменитые уравнения Максвелла и была высказана гипотеза об электромагнитной природе света-что свет является электромаг-
нитными волнами,-которая в 1888 г. была подтверждена Г.Герцем,экспериментально открывшим электромагнитные волны радио- и СВЧ- диапазона.
В теории Максвелла впервые в истории науки связывались между собой электрические и магнитные явления с оптическими явлениями.Упругий эфир Френеля превратился,таким обра-
зом, в носителя электромагнитных возмущений и электромагнитных волн,т.е. стал электромагнитным эфиром,а элекрические и магнитные поля напряжённости и индукции стали рассмат-
риваться как показатели напряжений и деформаций этого эфира.
Максвелл представлял себе электрические и магнитные поля и электромагнитные волны механически-как возмущения гипотетической,хотя и очень своеобразной,но всё же чисто механи-
ческой сплошной среды,наделённой особыми механическими св-вами;при этом он считал,что эфир в пустоте и эфир в веществе имеют различные мех. св-ва.
Сам Максвелл считал,что его уравнения справедливы только для покоящегося эфира,возмущениями которого являлись,по его представлениям,рассматриваемые им электромагнитные
поля и волны.Систему отсчёта,в которой эфир покоится Максвелл связывал с абсолютной системой отсчёта Ньютона.
Ур-ия Максвелла составлены для четырёх векторных ф-ий: E(x,y,z,t), D(x,y,z,t) - напряжённости и индукции электрического поля, H(x,y,z,t), B(x,y,z,t) - напряжённости и индукции маг-
нитного поля.Эти ф-ии характеризуют возмущение неподвижного электромагнитного эфира.Изменяющиеся со временем электрическое и магнитное поля не могут существовать по
отдельности - они образуют единое электромагнитное поле,представляющее собой электромагнитные,в частности оптические волны.
Уравнения Максвелла имеют следующий вид:
rot E = -дB / дt , rot H = j + дD / дt , div D = р , div B = 0,
где j=j(x,y,z,t) - объёмная плотность элекрического заряда.
Как видим,уравнения Максвелла предполагают,что координаты x,y,z и время t описываются в некоторой системе отсчёта,которая,по предположению Максвелла является системой отсчёта, в которой невозмущённый электромагнитый эфир покоится.
Попытками распространить уравнения Максвелла на произвольно движущиеся материальные прозрачнные среды,которые как предполагалось в соответствии с гипотезой Френеля
каким-то образом увлекали с собой эфир,занимались многие крупные физики последней четверти XIX в.,но,пожалуй,больше всех Г.А. Лоренц.
Исследуя выведенные им на основе его электронной теории уравнения Максвелла для движущейся среды,Лоренц в 1895 г. пришёл к удивительному результату,-что с точностью до членов первого порядка малости по v/c,где v-скорость движения системы отсчёта,c-скорость движения электромагнитных волн,эти уравнения Максвелла можно строго математически
преобразовать к виду уравнений Максвелла для неподвижной среды,т.е. он строго доказал,что уравнения Максвелла “не чувствуют” поступательного движения системы отсчёта,если
только она движется с постоянной скоростью.
Лоренц получил тем самым объяснение отрицательных результатов проведённых к тому времени экспериментов,показывающих,что с помощью оптических и электродинамических
эффектов первого порядка по v/c,производимых с земными источниками света,невозможно определить скорость движения Земли относительно межпланетного пространства Ньютона.
Чтобы объяснить остающийся,однако, необъяснённым отрицательный результат эксперимента Майкельсона-Морли второго порядка малости по v/c Лоренц и независимо Фицдже-
ральд выдвинули знаменитую гипотезу о сокращении всех тел,движущихся в абсолютном пространстве вдоль направления движения в отношении,зависящем от скорости движения .
Если Lо- длина покоящегося тела,L-дли-
на движущегося тело вдоль направления движения ,то,согласно этой “гипотезе сокращения”,
где b=, v/cv -скорость движения тела.
Чтобы объяснить невозможность определения скорости v тела,равномерно и прямолинейно движущегося относительно абсолютного пространствав оптических
и электродинамических экспериментах ,не только первого,но и второго, и более высоких порядков по v/c ,Лоренц доказал в своей работе по электродинамикедвижущихся сред (1904 г.) строгую математическую теорему,что уравнения Макселла в покоящейся и движущейся инерциальных системах отсчета имеют математически совершенно одинаковый вид ,с точностью дочленов и первого ,и второго,и более высоких порядков по v/c включительно .Он установил ,что они инвариантны.При этом Лоренц при преобразовании уравнений Максвелла от одной инерциальной системы отсчета к другой преобразовывал также и время t,
вводя математически совершенно формально так называемое “локальное время”: t¢=t-
x, где x,t -координата и время в покоящейся системе отсчета.В результате теоретических исследований Лоренца и проведённог Майкельсоном и Морли эксперимента естественно возникал электродинамический принцип тносительности,сформулированный Галлилемещё в XVII в.
Правда сам Лоренц этот принцип не провозгласил.Это сделали на основе его работ и в особенности егоработы 1904 г. сначала Пуанкаре ,а немного позже и независимо Эйнштейн в 1905 г.
Согласно механическому принципу относительности ,проводя различные механические эксперименты в лаборатории, движущейся с постоянной скоростью отьносительно покоящейся абсолютной лаборатории, невозможно измерить ее скорость движения. (Все механические явления в обеих лабораториях происходят совершенно одинаково).
Согласно электродинамическому принцину относительности, нельзя опрелить скорость движения указанной движущейся лаборатории, производя в ней также и всевозможжные электродинамические, в том числе оптические эксперименты. (Все электродинамические явления в обеих лабораториях происходят совершенно одинаково).
Как мы уже сказали, очень четко обобщенный общефизический принцип относильтельности, об инерциальных системах отсчета, впервые сформулировал Пуакаре в 1904 г. за год до формулировки этого принципа Эйнштейном в 1905 г. и появления основополагающей в специальной теории относительности его знаменитой работы 1905 г. Пуанкаре ещё с начала 90-х годов XIX в. интересовался теорией Лоренца и работал над её развитием.
Основные преобразования инвариантности-так называемые преобразования Лоренца:
были опубликованы Лоренцем в 1904 г. в упомянутой работе.
Пуанкаре понял, что преобразования, найденные Лоренцем, составляют группу преобразований инвариантности четырехмерного пространства-времени, координатными осями которого являются являются пространственные оси x,y,z и ось времени t. Он же назвал преобразования, найденные Лоренцем,”преобразованиями Лоренца”.
В знаменитой работе 1905 г. Эйнштейн сформулировал независимо от Пуанкаре общефизический принцип относительности для инерциальных систем отсчёта и, как он сам утверждал и как это часто утверждают другие, дал физически единственно правильную интерпретацию формулам преобразования Лоренца.
Эйнштейн заявил. что преставление о времени. которое существовало в физике со времён Галилея и Ньютона, ошибочно, что его надо исправить, т.е. строгим фомальным образом определить, что такое “время”. Это его утверждение основывалось на предложенном им в работе 1905 г. кинематическом, т.е. в отличие от работ Лоренца никак не связаны с электродинамикой, выводе формул преобразований Лоренца, выведенных, как Эйнштейн считал, только из правильного, предложенного им в этой работе понимания понятия времени.