Смекни!
smekni.com

Лекции по физике (стр. 4 из 42)

Родившаяся с появлением работы Эйнштейна 1905 г. так называемая специальная теория относительности оказалась исключительно полезной в физике микромира и стала широко использоваться в бурно развивавшихся в XX в. атомной физике, ядерной физике и физике элементарных частиц, т.е. в микрофизике.

Вообще считается, что в физике XX в. имеется только два главных фундаментальных теоретических достижения: теория относительности и квантовая механика.

15 4.2 Понятия абсолютного и относительного механического движения у Ньютона

В настоящее время в классической механике и во всех технических науках без какаих либо особых оговорок широко используется введённое Ньютоном в “Принципах” в 1687 г. представление об абсолютном движение,т.е. о движение тела или системы тел в абсолютно пустом пространстве ,т.е. относительно этого пространства при течении абсолютного времени.Считется ,что природа состоит из тел,движущихся или покоящихся в пустом пространстве.Само пространство неподвижно.о его движении говорить просто бессмысленно.Эти совершенно чёткие представления об абсолютном времени требуют ,однако ,серьёзных физических разъяснеий.

Необходимо хорошо понимать,что при непосредственно экспериментальном исследовании механического движения или состояния покоя тела мы всегда подразумеваем (неявно,неосознано) достаточно массивные твёрдые тела,относительно которых отсчитываем положение частей тела,системы тел ,малого тела в различные моменты времени ,мы подразуемые и некоторый

определённый конкретный измеритель времени ,

т.ею часыю

Другими словами .при экспериментальном изучении механического движения

мы всегда имеем некоторую вполне определённую “систему отсчета “,под которой

понимаются как все массивные тела ,относительно которых мы отсчитываем положение нашего движущегося или покоящегося тела,так и и конкретный используемый в экспериментах измеритель времени.

Эту мысль чаасто выражают словами:движение относительно, или движение по природе своей относительно.

Пример: 1)Космонавты в космическом корабле в качестве естественной для себя системы отсчета используют систему ,жёстко связанную со стенками космического корабля,и обычные,механические или электронные часы,имеющиеся на борту.

2)Для нас,людей на Земле,имеется естественная сис.отсчета ,-жёстко связанная

с неподвижными телами на поверхности Земли,или,что тоже самое ,жёстко связанные со стенами лабораториию.Это так называемая лабораторная система отсчета.В кчестве измерителя времени используют лабораторные часы.

Отмечая относительный характер механического движения и необходимость фиксации определённой системы отсчёта ,обязательно надо давать себе отсчет в том,что различные сис.отсчёта физически и механически вовсе не равноправны.

Другими словами,механические движения тел в различных сис.отсчёта происходят по-разному,по разным математическим и физическим законам.

16 Эксперименты ,однако,показывают,что среди всех возможных сис.отсчета в природе существуют всё-таки такие сис.отсчёта ,относительно которых движение или системы тел или малых частей тела являются наиболее простым и естественным.

Эти системы определяются как сис.отсчета,в которых выполняются абсолютно строго три закона Ньютона(в частности первый закон ,соглано которому поступательно движущееся тело,не подверженное никаким внешним воздействиям ,движется равномерно и прямолинейно).Такие сис.отсчёта называют инерциальнами.Их бесконечно много.Всеони движутся друг относительно друга

прямолинейно и равномерно.Одну из этих систем мы можем назвать абсолютной и считать,что это кака раз та система ,которую использует классическая механика Ньютона.

С другой стороны,может быть и на самом деле в природе существует одна .действительно абсолютная физ. сис.отсчета,скажем ,связанная с космическим просранством,простирающимя между Солнцем и Землёй и другими планетами.

Инерциальная сис.отсчёта является идеализацией ,абстракцией,так как любая конкретная сис.отсчёта всегда,строго говоря,не инерциальна.Вмесе с тем эо очень полезная абстракция ,так как всегда можно указать (и использовать в экспериментах) сис.отсчёта ,сколь угодно близкую к инерциальной .Например,для большинства механческих экспериментов ,проводимых в лаборатории такой приближённо инерциальной системой является сама лабораторная сис.отсчёта,хотя она и участвует во вращательном движении Земли(в частности чтобы убедиться в её неинерциальности ,в ней можно произвести известный опыт Фуко с маятнком ,плоскость качания которого едленно поворачивается).

Намног более инерциальна не так называемая “геоцентрическая”,а рассматриваемая в небесной механике “гелиоцентрическая”система,центр которой помещён в центр масс Солнечной системы и оси которой направлены на три неподвижные звезды.Эта гелиоцентрическая система ,однако ,тоже,строго говоря,

не инерциальна ,так как Солнце с планетами совершает вращательное движение относительно ядра нашей галактики-”Млечног пути”.

Эксперименты ,вообще ,не могут указать ни одной по-настоящему инерциальной сис.отсчёта.

Однако это не важно,так как ма всегда можем найти достаточно инерциальную систему для наших конкретных целей и представить себе абстрактно даже целый класс инерциальных сис.отсчёта ,движущихся относительно друг друга поступательно с постоянными скоростями.

17 Это-полезная абстракция.Из того что в природе нет идеальных геометрических прямых линий или идеальных геометрических плоскостей ,вовсе не следует ,чо абстракции бесконечной прямой линии и бесконечной плоскости не являются полезными;они даже очень полезны для нас.

Таким образом ,говоря об относительном характре ддвижения,нельзя встать на наивную точку зрения-считать,что все сис.отсчёта равноправны,что”всё на свете относительно”.

И тем не менее на такую точку зрения ,к сожалению часто встают.

Так ,с появлением теории относительности в XX в. некоторые её не очень образованные адепты стали утверждать,что бессмыслен был спор Коперника

с Галилея с католической церковью (а фактически с Аристотелем и Птолемеем)

о том,вращается ли Земля вокруг Солнца или Солнце вокруг Земли.

Чтобы объяснить идею абсолютного характера движения ,Ньютон в “Принципах”

(1687 г.) приводит описание знаменитого эксперимента с подвешенным ведром (“ведёрко Ньютона”).Возьмём ведро,или бадью,и подвесим его на верёвке к потолку ,закрутим верёвку и ведро,чтобы верёвка стала совсем тугой ,а потом отпустим ведро.Ведро придёт тогда через некоторое время в равномерное вращение ,при этом свободная поверхность воды примет форму параболоида вращения(“параболический мениск”).

18 Вода относительно нас будет вращаться,т.е. будет происходить движение воды относительно лабораторной системы отсчёта.Представим теперь себе,что мы встали на боьшую вращающуюся платформу,расположимся точно на её оси и будем рассматриивать свободно подвешенное ведро на незакрученной верёвке ,идущей точно вдоль оси платформы.Вода в ведре относительно нас вращается.Тепрь,однако,свободная поверхность воды будет горизонтальной.

Две рассмотренные системы отсчёта,таким образом,неравномерны,хотя относительное движение нас и ведра одинаково в обеих системах.

4.3.Неирциальные системы отсчёта и силы инерции

Механика Ньютона справедлива в инерциальных системах отсчёта.

В качестве такой системы с достаточным приближеием можно взять стены лаборатории-лабораторную систему отсчёта.

В некоторых случаях ,однако,удобно,и даже очень удобно,изучать движение тела,системы тел,малых частей тела в неинерциальной сис.отсчёта .Иногда это даже обязательно нужно сделать ,так как используемая инерциальная сис.отсчёта всегда в какой-то мере неирциальна и это порою необходимо учитывать.

Можно привеси примеры механических движений в падающем,оторвавшимся лифте,на вращающейся платформе на карусели,в купе железнодорожного вагона,движущегося с ускорением или замедлением ,в кабине космического корабля при выводе его на орбиту или кувыркающегося в пространстве и т.д. Все такие движения приходиться рассматривать в существенно неинерциальных сис.отсчёта.

В этих существенно неинерциальных системах уравнения механики неверны,т.е. неправильно и уравнене второго закона Ньютона:

где F- сумма реальных физических сил,действующих на тело со стороны других физических тел.

В случаях,когда всё-таки удобно или необходимо рассматривать механическую систему в неинерциальной сис.отсчёта ,нужно поэтому иметь какое-то исходное

основное механическое уравнение вместо уравненя второго закона Ньютона.

Такое уравнение можно,разумеется,получить специальным математическим персчётом из уравнения второго закона Ньютона,составленного для какой-нибудь инерциальной системы отсчёта,в данную удобную неинерциальную систему.

Результаты пересчета представляют, однако, снова в форме уравнения второго закона Ньютона, который теперь записывается следующим образом:

, где Fин. обозначают возникающие при пересчете дополнительные математические члены , которые называют силами инерции. Это название, однако, не должно вводить нас в заблуждение: силы инерции никоим образом не являются настоящими физическими силами, так как нельзя указать никакого реального тела, или тел, действиями которых обусловлены указанные "мифические" силы. Они целиком определяются механическими свойствами рассматриваемой конкретной неинерциальной системы отсчета, характером ее движения.