Смекни!
smekni.com

Билеты по физике (стр. 2 из 4)

Билет №15.

Электродвижущая сила. Закон Ома для полной цепи.

Для длительного протекания тока через проводник необходимо поддержание разности потенциалов на концах проводника (имеющей тенденцию к уменьшению под действием электрических сил). Существуют различного типа устройства для разобщения разноименных зарядов атомов (или молекул): магнитомеханические, электрохимические, термоэлектрические, фотоэлектрические. Такие устройства могут использоваться как источники тока. Действующие в источниках силы, разобщающие. Вопреки кулоновским силам, разноименные заряды, называются сторонними силами. Примером источника тока может служить аккумулятор, внутри которого химические силы разделяют молекулы на положительные и отрицательные ионы и переносят их на клеммы (зажимы) аккумулятора. Энергетической характеристикой источника тока является электродвижущая сила (ЭДС) Е=Астор/q. (Электродвижущая сила в замкнутом контуре представляет собой отношение работы сторонних сил при перемещении заряда вдоль контура к заряду). Простейшая электрическая цепь состоит из источника тока (сопротивлением r), потребителя или нагрузки (сопротивлением R) и соединительных проводов. Закон Ома для полной цепи: I=E/(R+r). Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Билет ‾№16.

Магнитное поле тока. Магнитная индукция. Магнитный поток.

Вокруг проводника с током существует магнитное поле, обнаруживаемое по его действию на железные опилки или на маленькие магнитные стрелки.

Наблюдаемые при этом концентрические окружности вокруг проводника можно назвать линиями магнитного поля. Магнитное поле – это особый вид материи, существующий вокруг движущихся заряженных тел или вокруг проводников с током и являющийся посредником в их взаимодействии. Силовое действие магнитного поля в любой его точке на пролетающую через нее заряженную частицу характеризуют магнитной индукцией В (или индукцией магнитного поля).

Пусть заряженная частица движется перпендикулярно линиям магнитного поля (или касательная к ним). Тогда модуль магнитной индукции выразится формулой, очень похожей на формулу силовой характеристики электрического роля – напряженности (Е=Fэл/qпроб): В=Fмаг/qпробν.

Направление вектора В связывают с направлением, в котором поворачивается в данном магнитном поле северный конец магнитной стрелки. При рассмотрении индукции как вектора линии магнитного поля можно более строго назвать линиями вектора магнитной индукции. В тех участках поля, для которых эти линии – прямые( например, вблизи полюсов постоянного магнита), вектор В направлен вдоль них, а там, где они кривые, вектор В направлен вдоль касательных к ним. Направление вектора магнитной индукции определяют правилом буравчика. Потоком магнитной индукции ∆Ф сквозь участок поверхности с малой площадью ∆S называется скалярная величина, равная ∆Ф=В•∆S•cosa=Вn•∆S, где Вn=B•cosa есть проекция вектора В магнитной индукции на нормаль к площадке

Положительный (отрицательный) знак магнитного потока соответствует острому (тупому) углу а, или условию Вn›0 (Вn‹0). Магнитный поток Ф сквозь поверхность с площадью Sнаходится алгебраическим суммированием потоков ∆Ф сквозь участки поверхности. Если магнитное поле однородно, то магнитный поток через плоскую поверхность с площадью Sравен Ф=Bscosa.

Билет№ 18.

Электрический ток – это совокупность упорядоченно движущихся заряженных частиц. Поэтому действие магнитного поля на проводник с током есть результат действия поля на движущиеся заряженные частицы внутри проводника. Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца. Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной ∆l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника: Fл=F/N. Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка ∆l и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля В можно считать неизменным в пределах этого отрезка проводника. Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц (числом зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой I=qnvS. Модуль силы, действующей со стороны магнитного поля на выбранный элемент тока, равен: F=│q│∆lBsina. Подставляя сюда предыдущее выражение для силы тока, получим: F=│q│nvS∆lBsina=v│q│NBsina, где N=nS∆l – число заряженных частиц в рассматриваемом объеме. Следовательно на каждый движущийся заряд со стороны магнитного поля действует сила Лоренца, равная:Fл=f/n=│q│vBsina, где а – угол между вектором скорости и вектором магнитной индукции. Сила Лоренца перпендикулярна векторам В и v, и ее направление определяется правилом левой руки. Так как сила Лоренца перпендикулярна скорости частицы, то она не совершает работу. Сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости. Под действием силы Лоренца меняется лишь направление частицы. При движении заряженной частицы в однородном электрическом поле радиус движения частицы остается неизменным: mv²/r=│q│vB, отсюда r=mv/│q│B.

Билет №19

Электрический ток в металлах

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика – порядка 10 в28степени 1/м3. Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью 10 в минус4 степени м/с. Наличие сво­бодных электронов в металлах было доказано в опытах Л. И. Мандельштама и Н. Д. Папалекси (1913 г.), Б. Стю­артом и Р. Толменом (1916 г.).

Опыт проводился следующим образом: на катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга. К концам дисков при помощи скользящих контактов при­соединяют гальванометр. Катушку приводят в быстрое движение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, обра­зующее ток прекращается. Ток (в металлах) создается движением отрицательно заряженных частиц. Переноси­мый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m. Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8▪10¹¹ Кл/кг. Скорость упорядоченного движения электронов прямо про­порциональна напряженности поля в проводнике (ν~E). Итак, электрический ток в металлах это направленное и упорядоченное движение свободных электронов.

Билет №23

Электрический ток в растворах и расплавах электролитов. Закон электролиза. Применение электролиза

Электролиты – водные растворы солей, кислот и щелочей. При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы. Этот процесс называется электролитической диссоциацией. Степень диссоциации, т.е. доля молекул в растворенном веществе, распавшихся на ионы, зависит от температуры, концентрации раствора и диэлектрической проницаемости ε растворителя. С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов. Ионы разных знаков при встрече могут снова объединится в нейтральные молекулы – рекомбинировать. Носителями заряда в водных растворах или расплавах электролитов являются положительно или отрицательно заряженные ионы. Поскольку перенос заряда в водных растворах или расплавах электролитов осуществляется ионами, такую проводимость называют ионной.

Электролизом называют процесс выделения на электроде чистого вещества, связанный с окислительно-восстановительными реакциями.(или такая формулировка: Электролиз – это выделение веществ из электролита с последующим осаждением на электродах; или такая: Электролиз – это процесс выделения током химических составляющих проводника).

Фарадей сформулировал два закона электролиза:

3. 1. Масса вещества, выделяющегося из электролита на электродах, оказывается тем большей, чем больший заряд прошел через электролит: m~q, или m~It, где I – сила тока, t – время его прохождения через электролит. Коэффициент k, превращающий эту пропорциональность в равенство m=kIt, называется электрохимическим эквивалентом вещества.

4. 2. Электрохимический эквивалент тем больший, чем больше масса моля вещества и чем меньше его валентность: k~M/n (эта дробь называется химическим эквивалентом вещества). Коэффициент, превращающий эту пропорциональность в равенство, назвали постоянной Фарадея F:k=1/F•M/n. Постоянная Фарадея равна произведению двух констант – постоянной Авогадро и заряда электрона: F=6,02 10²³ моль‾¹ •1,6•10 в степени -19Кл≈9,6•10 в степени 4 Кл/моль. Итак: k=1/F•M/n.

Подставив (2) в (1): m=MIt/Fn. Это объединенный закон Фарадея для электролиза.

Электролиз применяется:

7. 1. Гальванопластика, т.е. копирование рельефных предметов.

8. 2. Гальваностегия, т.е. нанесение на металлические изделия тонкого слоя другого металла (хром, никель, золото).