Смекни!
smekni.com

Лекции по физике (стр. 13 из 13)

газа вдоль трубы переменного сечения, при этом предположим, что

параметры потока газа, такие, как скорость потока, давление и

плотность, одинаковы во всех точках каждого из конечных сечений,

перпендикулярных к оси трубы.

Это предположение довольно хорошо соответствует действи­тельности для элементарной трубки тока, но его применяют и для труб конечных размеров, используя средние величины по сечениям трубы.

Через каждое поперечное сечение трубы в случае одномерного течения проходит за 1 с масса газа ..........., где ... - площадь поперечного сечения трубы, ... - скорость течения газа, ... - плотность газа. ПРи установившемся течении через все по­перечные сечения должна пройти одна и та же масса газа, т.е.

...

Прологарифмируем это уравнение сохранения массы. Получим

...

Считая переменными величины .............., возьмём полные дифференциалы от обеих частей. Имеем

...

Это и есть уравнение неразрывности для установившегося одно­мерного течения идеального газа в трубе переменного сечения.

Из уравнения неразрывности и уравнения Бернулли исключим величину ... . Получим

...

Это уравнение носит название уравнения Гюгонио.

Используя уравнение Гюгонио, проанализируем характер воз­можных течений газа в трубе переменного сечения.

Из уравнений следует:

1) при ... 1, что соответствует дозвуковым течениям, знаки величин ... и ... противоположны, т.е. там, где возрастает

..., в направлении течения скорость должна убывать, и на­оборот

2) для сверхзвуковых течений ......1, знаки ... и ... оди­наковы, т.е. сверхзвуковой поток расширяется противополож-

но дозвуковому. Чтобы увеличить его скорость, трубу следу­ет расширить

3) при ... = 1 имеем ... = 0, т.е. в этом случае ... достига­ет максимума или минимума. Можно показать, что ... = 1 может быть только в самом узком сечении трубы, где .......

Выводы о характере течений газа в трубах переменного сечения нашли применение в конструкциях сопел современных ракетных двига­телей и аэродинамических трубах больших скоростей. Для получения больших сверхзвуковых скоростей выходящего из сопла газа следует сначала сопло сужать, чтобы получить звуковую скорость газа в уз­ком сечении сопла, а затем сопло надо расширять для дальнейшего увеличения скорости выходящего из него газа.

Наибольшая скорость, которая может быть получена на выходе из сопла, зависит от площади выходного сечения и должна обеспечивать­ся необходимым для ... скорости давлением на входе в сопло.

1. Уравнение состояния.

Опыт показывает, что между основными параметрами, характери­зующими состояние газа (давлением, плотностью и температурой), су­ществует определённая зависимость.

Уравнение ............ = 0 , устанавливающее связь между этими параметрами, называется уравнением состояния.

Поэтому состояние любого газа определяется двумя параметрами (например, плотностью и температурой), так как третий параметр (давление) можно найти из уравнения состояния.

Для идеального газа уравнение состояния можно записать в виде

...

где ... - газовая постоянная, зависящая от относительной

молекулярной массы газа ... . Для воздуха ... = 29, ... = 287 ...

Под идеальным газом принято понимать газ, в котором взаимо­действие молекул между собой осуществляется посредством упругих столкновений, а линейный размер молекулы по сравнению со средним молекулярным расстоянием мал.

Существенное отличие свойств воздуха от свойств идеального газа наблюдается при высоких давлениях и низких температурах.

2. Уравнение теплоёмкости газа.

Рассмотрим некоторый произвольный термодинамический процесс. Количество теплоты ..., подведенное к 1 кг газа в этом процессе, выразим через приращение температуры газа ... :

...

Множитель С, представляющий собой количество теплоты, необхо­димое для подогрева 1 кг газа на 1 град в данном процессе, называ­ется удельной теплоёмкостью.

Удельная теплоёмкость существенно зависит от характера про­цесса.

Рассмотрим теплоёмкости, соответствующие процессам, происхо­дящим при постоянном объёме ... и давлении ... . Зависимость между удельными теплоёмкостями идеального газа ... и ... определяется следующим соотношением.

...

В термодинамике и газодинамике важное значение имеет отноше­ние теплоёмкостей ...... Величина ... зависит от структуры молеку­лы газа. Так, для идеальных одноатомных газов ... = 1.66, для двухатомных газов, в том числе и для воздуха, ... = 1.4.

3. Первый закон термодинамики.

Пусть некоторое количество газа находится в равновесии. Обозначим через ... количество подведённой к газу извне теплоты. В общем случае подвод теплоты приводит к изменению внутренней энергии газа ... и объёма. ПРи изменении объёма газ совершает внешнюю работу, равную ... . Поэтому

...

или, относя все величины к 1 кг массы газа, получаем

...

где ... - суммарная теплота, подведенная к 1 кг массы газа извне, ... - изменение внутренней энергии 1 кг массы газа, ...... - работа, затрачиваемая на расширение (... - объём, за­нимаемый 1 кг массы газа).

При постоянном объёме ... = 0, ... = 0 или ......., т.е. вся теплота, подводимая к газу, ..... тратится на увеличение его вну­тренней энергии. Поэтому

...

Пренебрегая зависимостью ... от температуры и имея в виду, что при .......0 ... = 0, имеем

...

Внутрення энергия является одной из функций состояния газа. Используя формулы

...

Уравнение является математическим выражением первого закона термодинамики.

Энтальпия. Введём ещё одну функцию состояния ..., определяе­мую соотношением

...

Или, пренебрегая изменением ...,

...

Эта функция называется энтальпией. Из определения энтальпии следует, что её приращение ... представляет собой приращение те­плоты ... в процессе ... = ... Имея это в виду, из первого закона термодинамики (...........................), интегрируя его в предположении ..........., получим

...

Используя уравнение состояния (......) и соотношение ......., имеем

...

Энтропия. При изучении течения газа часто используют понятие энтропии. Эта функция определяется дифференциальным соотношением

...

Найдём связь между энтропией и энтальпией

...

из первого закона термодинамики

...

следует

...

...

...

...

... - тензор плоскости импульса.

...

...

Течение в трубе.

...

Оператор Лапласа

...