Смекни!
smekni.com

Лекции по физике (стр. 4 из 13)

В идеальной жидкости существуют силы только нормального да­вления, однозначно определяемые её плотностью и температурой. Иде­альная жидкость - абстракция, которой можно пользоваться на прак­тике, если скорости изменения деформации в жидкости малы. Посколь­ку касательные напряжения связаны с понятием вязкости, можно ут­верждать, что идеальная жидкость - это невязкая жидкость.

Движение идеальной жидкости будем рассматривать в поле сил, характеризуемых объёмной плотностью на единицу объёма жидкости.

1. Уравнение неразрывности

Вывод основных гидродинамических уравнений начнём с вывода уравнения неразрывности, выражающего закон сохранения в гидродина­мике.

Математическое описание состояния движущейся жидкости осуще­ствляется с помощью функций, определяющих распределение скоростей ... и каких-либо двух термодинамических вели­чин, например, ... - давления и ... - плотности.

Скорость, давление и плотность жидкости будем относить к дан­ным точкам пространства, а не к определённым частицам жидкости, передвигающимся во времени и в пространстве. То есть будем пользо­ваться переменными Эйлера.

...

...

Рассмотрим некоторый объём ... пространства. Количество (мас­са) жидкости в этом объёме есть

...

Через элемент поверхности ..., ограничивающей рассматриваемый объём, в единицу времени протекает количество ........ жидкости.

Вектор ... по абсолютной величине равен площади элемента по­верхности и направлен по внешней нормали к ней. Тогда ... положительно, если жидкость вытекает из объёма, и отрицательно, ес­ли жидкость втекает в него.

Полное количество жидкости, вытекающей в единицу времени из объёма ...

...

где ... - поверхность, ограничивающая выделенный объём ... .

С другой стороны, уменьшение количества жидкости в объёме ... можно записать в виде

...

Приравнивая оба выражения, получаем:

...

Интеграл по поверхности преобразуем в интеграл по объёму

...

Таким образом,

...

Поскольку это равенство должно иметь место для любого выде­ленного объёма, то должно быть равным нулю подынтегральное выраже­ние, т.е.

...

Получили уравнение неразрывности.

... выражение ... можно записать

...

В декартовых координатах

...

Вектор

...

называют плотностью потока жидкости.

Его направление совпадает с направлением движения жидкости, а абсолютная величина определяет количество жидкости, протекающей в единице времени через единицу площади, расположенной перпендику­лярно к скорости.

2. Уравнения Эйлера

Выделим в жидкости конечный объём. Полная сила, действующая на выделенный объём жидкости, равна интегралу

...

взятому по поверхности рассматриваемого объёма. Преобразуем его в интеграл по объёму, имеем

...

Отсюда видно, что на каждый элемент объёма ... жидкости дей­ствует со стороны окружающей его жидкости сила - ... . Тогда на единицу объёма жидкости действует сила ... .

Мы можем теперь написать уравнение движения элемента объёма жидкости, приравняв силу ... произведению массы ... еди­ницы объёма жидкости на её ускорение

... (1)

Стоящая здесь производная ... определяет не изменение скорос­ти жидкости в данной неподвижной точке пространства, а изменение скорости определённой передвигающейся в пространстве частицы жид­кости. Эту величину необходимо выразить через величины, относящи­еся к неподвижным в пространстве точкам.

Изменение скорости ... данной жидкой частицы в течение време­ни ... складывается из двух частей:

- из изменения скорости в данной точке пространства в течение времени ...

- и из разности скоростей (в один и тот же момент времени) в двух точках, разделённых расстоянием ..., пройденным рас­сматриваемой частицей в течение времени ... .

Первая из этих частей равна

...

где производная берётся ... при постоянных ...,

т.е. в заданной точке пространства.

Вторая часть изменения скорости равна

...

Таким образом,

...

или, разделив обе скорости равенства на ...

...

Подставив полученное соотношение в (1), получим

...

Полученное уравнение движения жидкости - уравнение Эйлера (1755), и является одним из основных в гидродинамике.

Если жидкость находится в поле тяжести, то на каждую единицу её объёма действует ещё сила ... , где ... есть ускорение силы тяжести. Эта сила должна быть прибавлена к правой стороне уравне­ния и уравнение принимает вид:

...

При выводе уравнений движения мы совершенно не учитывали про­цессов диссоциации энергии, которые могут иметь место в текущей жидкости вследствие внутреннего трения (вязкости) в жидкости и теплообмена между различными её участками.

Отсутствие теплообмена между отдельными участками жидкости означает, что движение происходит адиабатически. Таким образом, движение идеальной жидкости следует рассматривать как адиабатичес­кое.

При адиабатическом движении энтропия каждого участка жидкости остаётся постоянной при перемещении последнего в пространстве. Обозначая ... энтропию, отнесённую к единице массы жидкости, мы можем выразить адиабатичность движения уравнением

...

полная производная по времени означает изменение энтропии заданного перемещающегося участка жидкости. Эту производную можно записать в виде

...

Это есть общее уравнение, выражающее собой адиабатичность движения идеальной жидкости. С помощью уравнения неразрывности его можно написать в виде уравнения неразрывности для энтропии.

...

где ... - плотность потока энтропии.

Иногда это условие используют в более простой форме. Если в некоторый момент времени энтропия одинакова во всех точках объёма жидкости, то она остаётся везде одинаковой и неизменной со временем и при дальнейшем движении жидкости.

В этих случаях уравнение адиабатичности записывается в виде

...

Изэнтропичностью движения можно воспользоваться и предста­вить уравнения Эйлера в другом виде. Из термодинамических соотно­шений известно

...

... - тепловая функция единицы массы жидкости,

... - удельный объём, Т - температура.

Поскольку ...., имеем просто

...

и поэтому

...

Уравнения Эйлера можно записать в виде

...

Воспользуемся известной формулой векторного анализа

...

уравнение Эйлера можно записать в другом виде

...

К уравнениям движения необходимо добавить граничные условия, которые должны выполняться на ограничивающих жидкость границах. Для идеальной жидкости это условие должно выражать собой просто тот факт, что жидкость не может проникнуть за твёрдую поверхность.

На неподвижных стенках это означает, что должна обращаться в нуль нормальная к стенке компонента вектора скорости:

...

3. Гидростатика

Для покоящейся жидкости, находящейся в однородном поле тяжес­ти, уравнение Эйлера принимает вид

...

Это уравнение описывает механическое равновесие жидкости.

Если внешние силы вообще отсутствуют, то уравнения равновесия дают

...

т.е. ... .

- давление одинаково во всех точках жидкости.

Притом плоскость жидкости постоянна во всём объёме. Направим ось ... вертикально вверх, имеем

...

Откуда

...

Если покоящаяся жидкость имеет свободную поверхность (на высоте ...), к которой приложено одинаковое во всех точках внешнее давление ..., то эта поверхность должна быть горизонтальной плос­костью ... .

...

...

Из условия ... при ... имеем

...

так что

...

4. Уравнение Бернулли

Уравнения гидродинамики заметно упрощаются в случае стацио­нарного течения жидкости. Под стационарным (или установившимся) подразумевают такое течение, при котором в каждой точке простран­ства, занятого жидкостью, скорость течения остаётся постоянной во времени. Скорость ... остаётся функцией только координат

...

...

Рассмотрим некоторые сведения о линиях тока. Линии тока это линии, касательные к которым указывают направление вектора скорос­ти в точке касания в данный момент времени. Уравнения линий тока определяются системой дифференциальных уравнений

...

При стационарном движении жидкости линии тока остаются неиз­менными во времени и совпадают с траекториями частиц жидкости.

При нестационарном течении такое совпадение не имеет места:

- касательные к линии тока дают направление скорости разных частиц жидкости в последовательных точках пространства в определённый момент времени

- касательные к траектории дают направление скорости опреде­лённых частиц в последовательные моменты времени.

Умножим уравнение Эйлера для стационарного потока жидкости на единичный вектор касательной к линии тока в каждой её точке ... .

Проекция градиента на некоторое направление равна производ­ной, взятой по этому направлению. Поэтому

...

Вектор ... перпендикулярен вектору скорости, и поэтому

его проекция на направление ... равна нулю

...

Таким образом получаем

...

Откуда следует, что величина ... постоянна вдоль линии тока

...

Значение ... , вообще говоря, различно для разных линий то­ка. Это уравнение называют уравнением Бернулли.

Если течение жидкости происходит в поле сил тяжести, то в правой части уравнений Эйлера есть ускорение силы тяжести ... .

Выберем направление силы тяжести в качестве направления оси ..., причём положительные значения ... отсчитываются вверх. Тогда проекция ... на ... есть

...

Соответственно этому будем иметь

...

Таким образом, уравнение Бернулли гласит, что вдоль линий тока остаётся постоянной длина

...


Тема 5

Потенциальные и несжимаемые течения

1. Сохранение циркуляции.

2. Потенциальное движение.

3. Несжимаемая жидкость.

1. Сохранение циркуляции скорости

Интеграл

...

взятый вдоль замкнутого контура, называют циркуляцией ско­рости вдоль этого контура.

Рассмотрим некоторый замкнутый контур, проведенный в жидкос­ти в некоторый момент времени. Будем рассматривать его как "жид­кий", составленный из находящихся на нём частиц жидкости. С тече­нием времени контур перемещается.